Step |
Hyp |
Ref |
Expression |
1 |
|
dfpo2 |
|- ( R Po A <-> ( ( R i^i ( _I |` A ) ) = (/) /\ ( ( R i^i ( A X. A ) ) o. ( R i^i ( A X. A ) ) ) C_ R ) ) |
2 |
1
|
simprbi |
|- ( R Po A -> ( ( R i^i ( A X. A ) ) o. ( R i^i ( A X. A ) ) ) C_ R ) |
3 |
2
|
ad2antrr |
|- ( ( ( R Po A /\ X e. A ) /\ Y e. Pred ( R , A , X ) ) -> ( ( R i^i ( A X. A ) ) o. ( R i^i ( A X. A ) ) ) C_ R ) |
4 |
|
simpr |
|- ( ( ( R Po A /\ X e. A ) /\ Y e. Pred ( R , A , X ) ) -> Y e. Pred ( R , A , X ) ) |
5 |
|
simplr |
|- ( ( ( R Po A /\ X e. A ) /\ Y e. Pred ( R , A , X ) ) -> X e. A ) |
6 |
|
predtrss |
|- ( ( ( ( R i^i ( A X. A ) ) o. ( R i^i ( A X. A ) ) ) C_ R /\ Y e. Pred ( R , A , X ) /\ X e. A ) -> Pred ( R , A , Y ) C_ Pred ( R , A , X ) ) |
7 |
3 4 5 6
|
syl3anc |
|- ( ( ( R Po A /\ X e. A ) /\ Y e. Pred ( R , A , X ) ) -> Pred ( R , A , Y ) C_ Pred ( R , A , X ) ) |
8 |
7
|
ex |
|- ( ( R Po A /\ X e. A ) -> ( Y e. Pred ( R , A , X ) -> Pred ( R , A , Y ) C_ Pred ( R , A , X ) ) ) |