| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-pred |  |-  Pred ( R , A , X ) = ( A i^i ( `' R " { X } ) ) | 
						
							| 2 |  | snprc |  |-  ( -. X e. _V <-> { X } = (/) ) | 
						
							| 3 | 2 | biimpi |  |-  ( -. X e. _V -> { X } = (/) ) | 
						
							| 4 | 3 | imaeq2d |  |-  ( -. X e. _V -> ( `' R " { X } ) = ( `' R " (/) ) ) | 
						
							| 5 |  | ima0 |  |-  ( `' R " (/) ) = (/) | 
						
							| 6 | 4 5 | eqtrdi |  |-  ( -. X e. _V -> ( `' R " { X } ) = (/) ) | 
						
							| 7 | 6 | ineq2d |  |-  ( -. X e. _V -> ( A i^i ( `' R " { X } ) ) = ( A i^i (/) ) ) | 
						
							| 8 |  | in0 |  |-  ( A i^i (/) ) = (/) | 
						
							| 9 | 7 8 | eqtrdi |  |-  ( -. X e. _V -> ( A i^i ( `' R " { X } ) ) = (/) ) | 
						
							| 10 | 1 9 | eqtrid |  |-  ( -. X e. _V -> Pred ( R , A , X ) = (/) ) |