Description: If A is a subset of B , then their predecessor classes are also subsets. (Contributed by Scott Fenton, 2-Feb-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | predpredss | |- ( A C_ B -> Pred ( R , A , X ) C_ Pred ( R , B , X ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrin | |- ( A C_ B -> ( A i^i ( `' R " { X } ) ) C_ ( B i^i ( `' R " { X } ) ) ) |
|
2 | df-pred | |- Pred ( R , A , X ) = ( A i^i ( `' R " { X } ) ) |
|
3 | df-pred | |- Pred ( R , B , X ) = ( B i^i ( `' R " { X } ) ) |
|
4 | 1 2 3 | 3sstr4g | |- ( A C_ B -> Pred ( R , A , X ) C_ Pred ( R , B , X ) ) |