Metamath Proof Explorer


Theorem predpredss

Description: If A is a subset of B , then their predecessor classes are also subsets. (Contributed by Scott Fenton, 2-Feb-2011)

Ref Expression
Assertion predpredss
|- ( A C_ B -> Pred ( R , A , X ) C_ Pred ( R , B , X ) )

Proof

Step Hyp Ref Expression
1 ssrin
 |-  ( A C_ B -> ( A i^i ( `' R " { X } ) ) C_ ( B i^i ( `' R " { X } ) ) )
2 df-pred
 |-  Pred ( R , A , X ) = ( A i^i ( `' R " { X } ) )
3 df-pred
 |-  Pred ( R , B , X ) = ( B i^i ( `' R " { X } ) )
4 1 2 3 3sstr4g
 |-  ( A C_ B -> Pred ( R , A , X ) C_ Pred ( R , B , X ) )