| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ssrab2 |  |-  { y e. A | y R X } C_ A | 
						
							| 2 |  | sseqin2 |  |-  ( { y e. A | y R X } C_ A <-> ( A i^i { y e. A | y R X } ) = { y e. A | y R X } ) | 
						
							| 3 | 1 2 | mpbi |  |-  ( A i^i { y e. A | y R X } ) = { y e. A | y R X } | 
						
							| 4 |  | dfrab2 |  |-  { y e. A | y R X } = ( { y | y R X } i^i A ) | 
						
							| 5 | 3 4 | eqtr2i |  |-  ( { y | y R X } i^i A ) = ( A i^i { y e. A | y R X } ) | 
						
							| 6 |  | iniseg |  |-  ( X e. _V -> ( `' R " { X } ) = { y | y R X } ) | 
						
							| 7 | 6 | ineq2d |  |-  ( X e. _V -> ( A i^i ( `' R " { X } ) ) = ( A i^i { y | y R X } ) ) | 
						
							| 8 |  | incom |  |-  ( A i^i { y | y R X } ) = ( { y | y R X } i^i A ) | 
						
							| 9 | 7 8 | eqtrdi |  |-  ( X e. _V -> ( A i^i ( `' R " { X } ) ) = ( { y | y R X } i^i A ) ) | 
						
							| 10 |  | iniseg |  |-  ( X e. _V -> ( `' ( R |` A ) " { X } ) = { y | y ( R |` A ) X } ) | 
						
							| 11 |  | brres |  |-  ( X e. _V -> ( y ( R |` A ) X <-> ( y e. A /\ y R X ) ) ) | 
						
							| 12 | 11 | abbidv |  |-  ( X e. _V -> { y | y ( R |` A ) X } = { y | ( y e. A /\ y R X ) } ) | 
						
							| 13 |  | df-rab |  |-  { y e. A | y R X } = { y | ( y e. A /\ y R X ) } | 
						
							| 14 | 12 13 | eqtr4di |  |-  ( X e. _V -> { y | y ( R |` A ) X } = { y e. A | y R X } ) | 
						
							| 15 | 10 14 | eqtrd |  |-  ( X e. _V -> ( `' ( R |` A ) " { X } ) = { y e. A | y R X } ) | 
						
							| 16 | 15 | ineq2d |  |-  ( X e. _V -> ( A i^i ( `' ( R |` A ) " { X } ) ) = ( A i^i { y e. A | y R X } ) ) | 
						
							| 17 | 5 9 16 | 3eqtr4a |  |-  ( X e. _V -> ( A i^i ( `' R " { X } ) ) = ( A i^i ( `' ( R |` A ) " { X } ) ) ) | 
						
							| 18 |  | df-pred |  |-  Pred ( R , A , X ) = ( A i^i ( `' R " { X } ) ) | 
						
							| 19 |  | df-pred |  |-  Pred ( ( R |` A ) , A , X ) = ( A i^i ( `' ( R |` A ) " { X } ) ) | 
						
							| 20 | 17 18 19 | 3eqtr4g |  |-  ( X e. _V -> Pred ( R , A , X ) = Pred ( ( R |` A ) , A , X ) ) | 
						
							| 21 |  | predprc |  |-  ( -. X e. _V -> Pred ( R , A , X ) = (/) ) | 
						
							| 22 |  | predprc |  |-  ( -. X e. _V -> Pred ( ( R |` A ) , A , X ) = (/) ) | 
						
							| 23 | 21 22 | eqtr4d |  |-  ( -. X e. _V -> Pred ( R , A , X ) = Pred ( ( R |` A ) , A , X ) ) | 
						
							| 24 | 20 23 | pm2.61i |  |-  Pred ( R , A , X ) = Pred ( ( R |` A ) , A , X ) |