Description: Property of the predecessor class for strict total orders. (Contributed by Scott Fenton, 11-Feb-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | predso | |- ( ( R Or A /\ X e. A ) -> ( Y e. Pred ( R , A , X ) -> Pred ( R , A , Y ) C_ Pred ( R , A , X ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sopo | |- ( R Or A -> R Po A ) |
|
2 | predpo | |- ( ( R Po A /\ X e. A ) -> ( Y e. Pred ( R , A , X ) -> Pred ( R , A , Y ) C_ Pred ( R , A , X ) ) ) |
|
3 | 1 2 | sylan | |- ( ( R Or A /\ X e. A ) -> ( Y e. Pred ( R , A , X ) -> Pred ( R , A , Y ) C_ Pred ( R , A , X ) ) ) |