Description: Property of the predecessor class for strict total orders. (Contributed by Scott Fenton, 11-Feb-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | predso | |- ( ( R Or A /\ X e. A ) -> ( Y e. Pred ( R , A , X ) -> Pred ( R , A , Y ) C_ Pred ( R , A , X ) ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | sopo | |- ( R Or A -> R Po A ) | |
| 2 | predpo | |- ( ( R Po A /\ X e. A ) -> ( Y e. Pred ( R , A , X ) -> Pred ( R , A , Y ) C_ Pred ( R , A , X ) ) ) | |
| 3 | 1 2 | sylan | |- ( ( R Or A /\ X e. A ) -> ( Y e. Pred ( R , A , X ) -> Pred ( R , A , Y ) C_ Pred ( R , A , X ) ) ) |