Metamath Proof Explorer


Theorem predso

Description: Property of the predecessor class for strict total orders. (Contributed by Scott Fenton, 11-Feb-2011)

Ref Expression
Assertion predso
|- ( ( R Or A /\ X e. A ) -> ( Y e. Pred ( R , A , X ) -> Pred ( R , A , Y ) C_ Pred ( R , A , X ) ) )

Proof

Step Hyp Ref Expression
1 sopo
 |-  ( R Or A -> R Po A )
2 predpo
 |-  ( ( R Po A /\ X e. A ) -> ( Y e. Pred ( R , A , X ) -> Pred ( R , A , Y ) C_ Pred ( R , A , X ) ) )
3 1 2 sylan
 |-  ( ( R Or A /\ X e. A ) -> ( Y e. Pred ( R , A , X ) -> Pred ( R , A , Y ) C_ Pred ( R , A , X ) ) )