Description: An unordered pair of two sets is a member of the powerclass of a class if and only if the two sets are members of that class. (Contributed by AV, 8-Jan-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | prelpw | |- ( ( A e. V /\ B e. W ) -> ( ( A e. C /\ B e. C ) <-> { A , B } e. ~P C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prssg | |- ( ( A e. V /\ B e. W ) -> ( ( A e. C /\ B e. C ) <-> { A , B } C_ C ) ) |
|
| 2 | prex | |- { A , B } e. _V |
|
| 3 | 2 | elpw | |- ( { A , B } e. ~P C <-> { A , B } C_ C ) |
| 4 | 1 3 | bitr4di | |- ( ( A e. V /\ B e. W ) -> ( ( A e. C /\ B e. C ) <-> { A , B } e. ~P C ) ) |