Metamath Proof Explorer


Theorem prelrrx2

Description: An unordered pair of ordered pairs with first components 1 and 2 and real numbers as second components is a point in a real Euclidean space of dimension 2. (Contributed by AV, 4-Feb-2023)

Ref Expression
Hypotheses prelrrx2.i
|- I = { 1 , 2 }
prelrrx2.b
|- P = ( RR ^m I )
Assertion prelrrx2
|- ( ( A e. RR /\ B e. RR ) -> { <. 1 , A >. , <. 2 , B >. } e. P )

Proof

Step Hyp Ref Expression
1 prelrrx2.i
 |-  I = { 1 , 2 }
2 prelrrx2.b
 |-  P = ( RR ^m I )
3 1ex
 |-  1 e. _V
4 2ex
 |-  2 e. _V
5 3 4 pm3.2i
 |-  ( 1 e. _V /\ 2 e. _V )
6 5 a1i
 |-  ( ( A e. RR /\ B e. RR ) -> ( 1 e. _V /\ 2 e. _V ) )
7 id
 |-  ( ( A e. RR /\ B e. RR ) -> ( A e. RR /\ B e. RR ) )
8 1ne2
 |-  1 =/= 2
9 8 a1i
 |-  ( ( A e. RR /\ B e. RR ) -> 1 =/= 2 )
10 6 7 9 3jca
 |-  ( ( A e. RR /\ B e. RR ) -> ( ( 1 e. _V /\ 2 e. _V ) /\ ( A e. RR /\ B e. RR ) /\ 1 =/= 2 ) )
11 fprg
 |-  ( ( ( 1 e. _V /\ 2 e. _V ) /\ ( A e. RR /\ B e. RR ) /\ 1 =/= 2 ) -> { <. 1 , A >. , <. 2 , B >. } : { 1 , 2 } --> { A , B } )
12 10 11 syl
 |-  ( ( A e. RR /\ B e. RR ) -> { <. 1 , A >. , <. 2 , B >. } : { 1 , 2 } --> { A , B } )
13 prssi
 |-  ( ( A e. RR /\ B e. RR ) -> { A , B } C_ RR )
14 12 13 fssd
 |-  ( ( A e. RR /\ B e. RR ) -> { <. 1 , A >. , <. 2 , B >. } : { 1 , 2 } --> RR )
15 reex
 |-  RR e. _V
16 prex
 |-  { 1 , 2 } e. _V
17 15 16 pm3.2i
 |-  ( RR e. _V /\ { 1 , 2 } e. _V )
18 elmapg
 |-  ( ( RR e. _V /\ { 1 , 2 } e. _V ) -> ( { <. 1 , A >. , <. 2 , B >. } e. ( RR ^m { 1 , 2 } ) <-> { <. 1 , A >. , <. 2 , B >. } : { 1 , 2 } --> RR ) )
19 17 18 ax-mp
 |-  ( { <. 1 , A >. , <. 2 , B >. } e. ( RR ^m { 1 , 2 } ) <-> { <. 1 , A >. , <. 2 , B >. } : { 1 , 2 } --> RR )
20 14 19 sylibr
 |-  ( ( A e. RR /\ B e. RR ) -> { <. 1 , A >. , <. 2 , B >. } e. ( RR ^m { 1 , 2 } ) )
21 1 oveq2i
 |-  ( RR ^m I ) = ( RR ^m { 1 , 2 } )
22 2 21 eqtri
 |-  P = ( RR ^m { 1 , 2 } )
23 22 eleq2i
 |-  ( { <. 1 , A >. , <. 2 , B >. } e. P <-> { <. 1 , A >. , <. 2 , B >. } e. ( RR ^m { 1 , 2 } ) )
24 20 23 sylibr
 |-  ( ( A e. RR /\ B e. RR ) -> { <. 1 , A >. , <. 2 , B >. } e. P )