Description: Equality theorem for unordered pairs. (Contributed by NM, 29-Mar-1998)
Ref | Expression | ||
---|---|---|---|
Assertion | preq1 | |- ( A = B -> { A , C } = { B , C } ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sneq | |- ( A = B -> { A } = { B } ) |
|
2 | 1 | uneq1d | |- ( A = B -> ( { A } u. { C } ) = ( { B } u. { C } ) ) |
3 | df-pr | |- { A , C } = ( { A } u. { C } ) |
|
4 | df-pr | |- { B , C } = ( { B } u. { C } ) |
|
5 | 2 3 4 | 3eqtr4g | |- ( A = B -> { A , C } = { B , C } ) |