Description: Equality theorem for unordered pairs. (Contributed by NM, 19-Oct-2012)
Ref | Expression | ||
---|---|---|---|
Assertion | preq12 | |- ( ( A = C /\ B = D ) -> { A , B } = { C , D } ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | preq1 | |- ( A = C -> { A , B } = { C , B } ) |
|
2 | preq2 | |- ( B = D -> { C , B } = { C , D } ) |
|
3 | 1 2 | sylan9eq | |- ( ( A = C /\ B = D ) -> { A , B } = { C , D } ) |