Step |
Hyp |
Ref |
Expression |
1 |
|
preq1 |
|- ( x = A -> { x , y } = { A , y } ) |
2 |
1
|
eqeq1d |
|- ( x = A -> ( { x , y } = { z , D } <-> { A , y } = { z , D } ) ) |
3 |
|
eqeq1 |
|- ( x = A -> ( x = z <-> A = z ) ) |
4 |
3
|
anbi1d |
|- ( x = A -> ( ( x = z /\ y = D ) <-> ( A = z /\ y = D ) ) ) |
5 |
|
eqeq1 |
|- ( x = A -> ( x = D <-> A = D ) ) |
6 |
5
|
anbi1d |
|- ( x = A -> ( ( x = D /\ y = z ) <-> ( A = D /\ y = z ) ) ) |
7 |
4 6
|
orbi12d |
|- ( x = A -> ( ( ( x = z /\ y = D ) \/ ( x = D /\ y = z ) ) <-> ( ( A = z /\ y = D ) \/ ( A = D /\ y = z ) ) ) ) |
8 |
2 7
|
bibi12d |
|- ( x = A -> ( ( { x , y } = { z , D } <-> ( ( x = z /\ y = D ) \/ ( x = D /\ y = z ) ) ) <-> ( { A , y } = { z , D } <-> ( ( A = z /\ y = D ) \/ ( A = D /\ y = z ) ) ) ) ) |
9 |
8
|
imbi2d |
|- ( x = A -> ( ( D e. Y -> ( { x , y } = { z , D } <-> ( ( x = z /\ y = D ) \/ ( x = D /\ y = z ) ) ) ) <-> ( D e. Y -> ( { A , y } = { z , D } <-> ( ( A = z /\ y = D ) \/ ( A = D /\ y = z ) ) ) ) ) ) |
10 |
|
preq2 |
|- ( y = B -> { A , y } = { A , B } ) |
11 |
10
|
eqeq1d |
|- ( y = B -> ( { A , y } = { z , D } <-> { A , B } = { z , D } ) ) |
12 |
|
eqeq1 |
|- ( y = B -> ( y = D <-> B = D ) ) |
13 |
12
|
anbi2d |
|- ( y = B -> ( ( A = z /\ y = D ) <-> ( A = z /\ B = D ) ) ) |
14 |
|
eqeq1 |
|- ( y = B -> ( y = z <-> B = z ) ) |
15 |
14
|
anbi2d |
|- ( y = B -> ( ( A = D /\ y = z ) <-> ( A = D /\ B = z ) ) ) |
16 |
13 15
|
orbi12d |
|- ( y = B -> ( ( ( A = z /\ y = D ) \/ ( A = D /\ y = z ) ) <-> ( ( A = z /\ B = D ) \/ ( A = D /\ B = z ) ) ) ) |
17 |
11 16
|
bibi12d |
|- ( y = B -> ( ( { A , y } = { z , D } <-> ( ( A = z /\ y = D ) \/ ( A = D /\ y = z ) ) ) <-> ( { A , B } = { z , D } <-> ( ( A = z /\ B = D ) \/ ( A = D /\ B = z ) ) ) ) ) |
18 |
17
|
imbi2d |
|- ( y = B -> ( ( D e. Y -> ( { A , y } = { z , D } <-> ( ( A = z /\ y = D ) \/ ( A = D /\ y = z ) ) ) ) <-> ( D e. Y -> ( { A , B } = { z , D } <-> ( ( A = z /\ B = D ) \/ ( A = D /\ B = z ) ) ) ) ) ) |
19 |
|
preq1 |
|- ( z = C -> { z , D } = { C , D } ) |
20 |
19
|
eqeq2d |
|- ( z = C -> ( { A , B } = { z , D } <-> { A , B } = { C , D } ) ) |
21 |
|
eqeq2 |
|- ( z = C -> ( A = z <-> A = C ) ) |
22 |
21
|
anbi1d |
|- ( z = C -> ( ( A = z /\ B = D ) <-> ( A = C /\ B = D ) ) ) |
23 |
|
eqeq2 |
|- ( z = C -> ( B = z <-> B = C ) ) |
24 |
23
|
anbi2d |
|- ( z = C -> ( ( A = D /\ B = z ) <-> ( A = D /\ B = C ) ) ) |
25 |
22 24
|
orbi12d |
|- ( z = C -> ( ( ( A = z /\ B = D ) \/ ( A = D /\ B = z ) ) <-> ( ( A = C /\ B = D ) \/ ( A = D /\ B = C ) ) ) ) |
26 |
20 25
|
bibi12d |
|- ( z = C -> ( ( { A , B } = { z , D } <-> ( ( A = z /\ B = D ) \/ ( A = D /\ B = z ) ) ) <-> ( { A , B } = { C , D } <-> ( ( A = C /\ B = D ) \/ ( A = D /\ B = C ) ) ) ) ) |
27 |
26
|
imbi2d |
|- ( z = C -> ( ( D e. Y -> ( { A , B } = { z , D } <-> ( ( A = z /\ B = D ) \/ ( A = D /\ B = z ) ) ) ) <-> ( D e. Y -> ( { A , B } = { C , D } <-> ( ( A = C /\ B = D ) \/ ( A = D /\ B = C ) ) ) ) ) ) |
28 |
|
preq2 |
|- ( w = D -> { z , w } = { z , D } ) |
29 |
28
|
eqeq2d |
|- ( w = D -> ( { x , y } = { z , w } <-> { x , y } = { z , D } ) ) |
30 |
|
eqeq2 |
|- ( w = D -> ( y = w <-> y = D ) ) |
31 |
30
|
anbi2d |
|- ( w = D -> ( ( x = z /\ y = w ) <-> ( x = z /\ y = D ) ) ) |
32 |
|
eqeq2 |
|- ( w = D -> ( x = w <-> x = D ) ) |
33 |
32
|
anbi1d |
|- ( w = D -> ( ( x = w /\ y = z ) <-> ( x = D /\ y = z ) ) ) |
34 |
31 33
|
orbi12d |
|- ( w = D -> ( ( ( x = z /\ y = w ) \/ ( x = w /\ y = z ) ) <-> ( ( x = z /\ y = D ) \/ ( x = D /\ y = z ) ) ) ) |
35 |
|
vex |
|- x e. _V |
36 |
|
vex |
|- y e. _V |
37 |
|
vex |
|- z e. _V |
38 |
|
vex |
|- w e. _V |
39 |
35 36 37 38
|
preq12b |
|- ( { x , y } = { z , w } <-> ( ( x = z /\ y = w ) \/ ( x = w /\ y = z ) ) ) |
40 |
29 34 39
|
vtoclbg |
|- ( D e. Y -> ( { x , y } = { z , D } <-> ( ( x = z /\ y = D ) \/ ( x = D /\ y = z ) ) ) ) |
41 |
40
|
a1i |
|- ( ( x e. V /\ y e. W /\ z e. X ) -> ( D e. Y -> ( { x , y } = { z , D } <-> ( ( x = z /\ y = D ) \/ ( x = D /\ y = z ) ) ) ) ) |
42 |
9 18 27 41
|
vtocl3ga |
|- ( ( A e. V /\ B e. W /\ C e. X ) -> ( D e. Y -> ( { A , B } = { C , D } <-> ( ( A = C /\ B = D ) \/ ( A = D /\ B = C ) ) ) ) ) |
43 |
42
|
3expa |
|- ( ( ( A e. V /\ B e. W ) /\ C e. X ) -> ( D e. Y -> ( { A , B } = { C , D } <-> ( ( A = C /\ B = D ) \/ ( A = D /\ B = C ) ) ) ) ) |
44 |
43
|
impr |
|- ( ( ( A e. V /\ B e. W ) /\ ( C e. X /\ D e. Y ) ) -> ( { A , B } = { C , D } <-> ( ( A = C /\ B = D ) \/ ( A = D /\ B = C ) ) ) ) |