Description: Equality deduction for unordered pairs. (Contributed by NM, 19-Oct-2012)
Ref | Expression | ||
---|---|---|---|
Hypotheses | preq1d.1 | |- ( ph -> A = B ) |
|
preq12d.2 | |- ( ph -> C = D ) |
||
Assertion | preq12d | |- ( ph -> { A , C } = { B , D } ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | preq1d.1 | |- ( ph -> A = B ) |
|
2 | preq12d.2 | |- ( ph -> C = D ) |
|
3 | preq12 | |- ( ( A = B /\ C = D ) -> { A , C } = { B , D } ) |
|
4 | 1 2 3 | syl2anc | |- ( ph -> { A , C } = { B , D } ) |