| Step | Hyp | Ref | Expression | 
						
							| 1 |  | preq1b.a |  |-  ( ph -> A e. V ) | 
						
							| 2 |  | preq1b.b |  |-  ( ph -> B e. W ) | 
						
							| 3 |  | prid1g |  |-  ( A e. V -> A e. { A , C } ) | 
						
							| 4 | 1 3 | syl |  |-  ( ph -> A e. { A , C } ) | 
						
							| 5 |  | eleq2 |  |-  ( { A , C } = { B , C } -> ( A e. { A , C } <-> A e. { B , C } ) ) | 
						
							| 6 | 4 5 | syl5ibcom |  |-  ( ph -> ( { A , C } = { B , C } -> A e. { B , C } ) ) | 
						
							| 7 |  | elprg |  |-  ( A e. V -> ( A e. { B , C } <-> ( A = B \/ A = C ) ) ) | 
						
							| 8 | 1 7 | syl |  |-  ( ph -> ( A e. { B , C } <-> ( A = B \/ A = C ) ) ) | 
						
							| 9 | 6 8 | sylibd |  |-  ( ph -> ( { A , C } = { B , C } -> ( A = B \/ A = C ) ) ) | 
						
							| 10 | 9 | imp |  |-  ( ( ph /\ { A , C } = { B , C } ) -> ( A = B \/ A = C ) ) | 
						
							| 11 |  | prid1g |  |-  ( B e. W -> B e. { B , C } ) | 
						
							| 12 | 2 11 | syl |  |-  ( ph -> B e. { B , C } ) | 
						
							| 13 |  | eleq2 |  |-  ( { A , C } = { B , C } -> ( B e. { A , C } <-> B e. { B , C } ) ) | 
						
							| 14 | 12 13 | syl5ibrcom |  |-  ( ph -> ( { A , C } = { B , C } -> B e. { A , C } ) ) | 
						
							| 15 |  | elprg |  |-  ( B e. W -> ( B e. { A , C } <-> ( B = A \/ B = C ) ) ) | 
						
							| 16 | 2 15 | syl |  |-  ( ph -> ( B e. { A , C } <-> ( B = A \/ B = C ) ) ) | 
						
							| 17 | 14 16 | sylibd |  |-  ( ph -> ( { A , C } = { B , C } -> ( B = A \/ B = C ) ) ) | 
						
							| 18 | 17 | imp |  |-  ( ( ph /\ { A , C } = { B , C } ) -> ( B = A \/ B = C ) ) | 
						
							| 19 |  | eqcom |  |-  ( A = B <-> B = A ) | 
						
							| 20 |  | eqeq2 |  |-  ( A = C -> ( B = A <-> B = C ) ) | 
						
							| 21 | 10 18 19 20 | oplem1 |  |-  ( ( ph /\ { A , C } = { B , C } ) -> A = B ) | 
						
							| 22 | 21 | ex |  |-  ( ph -> ( { A , C } = { B , C } -> A = B ) ) | 
						
							| 23 |  | preq1 |  |-  ( A = B -> { A , C } = { B , C } ) | 
						
							| 24 | 22 23 | impbid1 |  |-  ( ph -> ( { A , C } = { B , C } <-> A = B ) ) |