Metamath Proof Explorer


Theorem preq1i

Description: Equality inference for unordered pairs. (Contributed by NM, 19-Oct-2012)

Ref Expression
Hypothesis preq1i.1
|- A = B
Assertion preq1i
|- { A , C } = { B , C }

Proof

Step Hyp Ref Expression
1 preq1i.1
 |-  A = B
2 preq1
 |-  ( A = B -> { A , C } = { B , C } )
3 1 2 ax-mp
 |-  { A , C } = { B , C }