Metamath Proof Explorer


Theorem preq2i

Description: Equality inference for unordered pairs. (Contributed by NM, 19-Oct-2012)

Ref Expression
Hypothesis preq1i.1
|- A = B
Assertion preq2i
|- { C , A } = { C , B }

Proof

Step Hyp Ref Expression
1 preq1i.1
 |-  A = B
2 preq2
 |-  ( A = B -> { C , A } = { C , B } )
3 1 2 ax-mp
 |-  { C , A } = { C , B }