Description: Reverse equality lemma for unordered pairs. If two unordered pairs have the same second element, the first elements are equal. (Contributed by NM, 18-Oct-1995)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | preqr1.a | |- A e. _V | |
| preqr1.b | |- B e. _V | ||
| Assertion | preqr1 | |- ( { A , C } = { B , C } -> A = B ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | preqr1.a | |- A e. _V | |
| 2 | preqr1.b | |- B e. _V | |
| 3 | id | |- ( A e. _V -> A e. _V ) | |
| 4 | 2 | a1i | |- ( A e. _V -> B e. _V ) | 
| 5 | 3 4 | preq1b |  |-  ( A e. _V -> ( { A , C } = { B , C } <-> A = B ) ) | 
| 6 | 1 5 | ax-mp |  |-  ( { A , C } = { B , C } <-> A = B ) | 
| 7 | 6 | biimpi |  |-  ( { A , C } = { B , C } -> A = B ) |