Description: Reverse equality lemma for unordered pairs. If two unordered pairs have the same second element, the first elements are equal. Closed form of preqr1 . (Contributed by AV, 29-Jan-2021) (Revised by AV, 18-Sep-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | preqr1g | |- ( ( A e. V /\ B e. W ) -> ( { A , C } = { B , C } -> A = B ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl | |- ( ( A e. V /\ B e. W ) -> A e. V ) |
|
2 | simpr | |- ( ( A e. V /\ B e. W ) -> B e. W ) |
|
3 | 1 2 | preq1b | |- ( ( A e. V /\ B e. W ) -> ( { A , C } = { B , C } <-> A = B ) ) |
4 | 3 | biimpd | |- ( ( A e. V /\ B e. W ) -> ( { A , C } = { B , C } -> A = B ) ) |