Description: Reverse equality lemma for unordered pairs. If two unordered pairs have the same first element, the second elements are equal. (Contributed by NM, 15-Jul-1993)
Ref | Expression | ||
---|---|---|---|
Hypotheses | preqr1.a | |- A e. _V |
|
preqr1.b | |- B e. _V |
||
Assertion | preqr2 | |- ( { C , A } = { C , B } -> A = B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | preqr1.a | |- A e. _V |
|
2 | preqr1.b | |- B e. _V |
|
3 | prcom | |- { C , A } = { A , C } |
|
4 | prcom | |- { C , B } = { B , C } |
|
5 | 3 4 | eqeq12i | |- ( { C , A } = { C , B } <-> { A , C } = { B , C } ) |
6 | 1 2 | preqr1 | |- ( { A , C } = { B , C } -> A = B ) |
7 | 5 6 | sylbi | |- ( { C , A } = { C , B } -> A = B ) |