Description: Reverse equality lemma for unordered pairs. If two unordered pairs have the same first element, the second elements are equal. (Contributed by NM, 15-Jul-1993)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | preqr1.a | |- A e. _V |
|
| preqr1.b | |- B e. _V |
||
| Assertion | preqr2 | |- ( { C , A } = { C , B } -> A = B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | preqr1.a | |- A e. _V |
|
| 2 | preqr1.b | |- B e. _V |
|
| 3 | prcom | |- { C , A } = { A , C } |
|
| 4 | prcom | |- { C , B } = { B , C } |
|
| 5 | 3 4 | eqeq12i | |- ( { C , A } = { C , B } <-> { A , C } = { B , C } ) |
| 6 | 1 2 | preqr1 | |- ( { A , C } = { B , C } -> A = B ) |
| 7 | 5 6 | sylbi | |- ( { C , A } = { C , B } -> A = B ) |