Description: Equivalence for a pair equal to a singleton. (Contributed by NM, 3-Jun-2008) (Revised by AV, 12-Jun-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | preqsn.1 | |- A e. _V | |
| preqsn.2 | |- B e. _V | ||
| Assertion | preqsn | |- ( { A , B } = { C } <-> ( A = B /\ B = C ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | preqsn.1 | |- A e. _V | |
| 2 | preqsn.2 | |- B e. _V | |
| 3 | id | |- ( A e. _V -> A e. _V ) | |
| 4 | 2 | a1i | |- ( A e. _V -> B e. _V ) | 
| 5 | 3 4 | preqsnd |  |-  ( A e. _V -> ( { A , B } = { C } <-> ( A = C /\ B = C ) ) ) | 
| 6 | 1 5 | ax-mp |  |-  ( { A , B } = { C } <-> ( A = C /\ B = C ) ) | 
| 7 | eqeq2 | |- ( B = C -> ( A = B <-> A = C ) ) | |
| 8 | 7 | pm5.32ri | |- ( ( A = B /\ B = C ) <-> ( A = C /\ B = C ) ) | 
| 9 | 6 8 | bitr4i |  |-  ( { A , B } = { C } <-> ( A = B /\ B = C ) ) |