Description: Equivalence for a pair equal to a singleton. (Contributed by NM, 3-Jun-2008) (Revised by AV, 12-Jun-2022)
Ref | Expression | ||
---|---|---|---|
Hypotheses | preqsn.1 | |- A e. _V |
|
preqsn.2 | |- B e. _V |
||
Assertion | preqsn | |- ( { A , B } = { C } <-> ( A = B /\ B = C ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | preqsn.1 | |- A e. _V |
|
2 | preqsn.2 | |- B e. _V |
|
3 | id | |- ( A e. _V -> A e. _V ) |
|
4 | 2 | a1i | |- ( A e. _V -> B e. _V ) |
5 | 3 4 | preqsnd | |- ( A e. _V -> ( { A , B } = { C } <-> ( A = C /\ B = C ) ) ) |
6 | 1 5 | ax-mp | |- ( { A , B } = { C } <-> ( A = C /\ B = C ) ) |
7 | eqeq2 | |- ( B = C -> ( A = B <-> A = C ) ) |
|
8 | 7 | pm5.32ri | |- ( ( A = B /\ B = C ) <-> ( A = C /\ B = C ) ) |
9 | 6 8 | bitr4i | |- ( { A , B } = { C } <-> ( A = B /\ B = C ) ) |