| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elfz3 |  |-  ( M e. ZZ -> M e. ( M ... M ) ) | 
						
							| 2 |  | fznuz |  |-  ( M e. ( M ... M ) -> -. M e. ( ZZ>= ` ( M + 1 ) ) ) | 
						
							| 3 | 1 2 | syl |  |-  ( M e. ZZ -> -. M e. ( ZZ>= ` ( M + 1 ) ) ) | 
						
							| 4 | 3 | 3mix1d |  |-  ( M e. ZZ -> ( -. M e. ( ZZ>= ` ( M + 1 ) ) \/ -. N e. ZZ \/ -. M < N ) ) | 
						
							| 5 |  | 3ianor |  |-  ( -. ( M e. ( ZZ>= ` ( M + 1 ) ) /\ N e. ZZ /\ M < N ) <-> ( -. M e. ( ZZ>= ` ( M + 1 ) ) \/ -. N e. ZZ \/ -. M < N ) ) | 
						
							| 6 |  | elfzo2 |  |-  ( M e. ( ( M + 1 ) ..^ N ) <-> ( M e. ( ZZ>= ` ( M + 1 ) ) /\ N e. ZZ /\ M < N ) ) | 
						
							| 7 | 5 6 | xchnxbir |  |-  ( -. M e. ( ( M + 1 ) ..^ N ) <-> ( -. M e. ( ZZ>= ` ( M + 1 ) ) \/ -. N e. ZZ \/ -. M < N ) ) | 
						
							| 8 | 4 7 | sylibr |  |-  ( M e. ZZ -> -. M e. ( ( M + 1 ) ..^ N ) ) | 
						
							| 9 |  | incom |  |-  ( { M } i^i ( ( M + 1 ) ..^ N ) ) = ( ( ( M + 1 ) ..^ N ) i^i { M } ) | 
						
							| 10 | 9 | eqeq1i |  |-  ( ( { M } i^i ( ( M + 1 ) ..^ N ) ) = (/) <-> ( ( ( M + 1 ) ..^ N ) i^i { M } ) = (/) ) | 
						
							| 11 |  | disjsn |  |-  ( ( ( ( M + 1 ) ..^ N ) i^i { M } ) = (/) <-> -. M e. ( ( M + 1 ) ..^ N ) ) | 
						
							| 12 | 10 11 | bitri |  |-  ( ( { M } i^i ( ( M + 1 ) ..^ N ) ) = (/) <-> -. M e. ( ( M + 1 ) ..^ N ) ) | 
						
							| 13 | 8 12 | sylibr |  |-  ( M e. ZZ -> ( { M } i^i ( ( M + 1 ) ..^ N ) ) = (/) ) | 
						
							| 14 |  | fzonel |  |-  -. N e. ( ( M + 1 ) ..^ N ) | 
						
							| 15 | 14 | a1i |  |-  ( M e. ZZ -> -. N e. ( ( M + 1 ) ..^ N ) ) | 
						
							| 16 |  | incom |  |-  ( { N } i^i ( ( M + 1 ) ..^ N ) ) = ( ( ( M + 1 ) ..^ N ) i^i { N } ) | 
						
							| 17 | 16 | eqeq1i |  |-  ( ( { N } i^i ( ( M + 1 ) ..^ N ) ) = (/) <-> ( ( ( M + 1 ) ..^ N ) i^i { N } ) = (/) ) | 
						
							| 18 |  | disjsn |  |-  ( ( ( ( M + 1 ) ..^ N ) i^i { N } ) = (/) <-> -. N e. ( ( M + 1 ) ..^ N ) ) | 
						
							| 19 | 17 18 | bitri |  |-  ( ( { N } i^i ( ( M + 1 ) ..^ N ) ) = (/) <-> -. N e. ( ( M + 1 ) ..^ N ) ) | 
						
							| 20 | 15 19 | sylibr |  |-  ( M e. ZZ -> ( { N } i^i ( ( M + 1 ) ..^ N ) ) = (/) ) | 
						
							| 21 |  | df-pr |  |-  { M , N } = ( { M } u. { N } ) | 
						
							| 22 | 21 | ineq1i |  |-  ( { M , N } i^i ( ( M + 1 ) ..^ N ) ) = ( ( { M } u. { N } ) i^i ( ( M + 1 ) ..^ N ) ) | 
						
							| 23 | 22 | eqeq1i |  |-  ( ( { M , N } i^i ( ( M + 1 ) ..^ N ) ) = (/) <-> ( ( { M } u. { N } ) i^i ( ( M + 1 ) ..^ N ) ) = (/) ) | 
						
							| 24 |  | undisj1 |  |-  ( ( ( { M } i^i ( ( M + 1 ) ..^ N ) ) = (/) /\ ( { N } i^i ( ( M + 1 ) ..^ N ) ) = (/) ) <-> ( ( { M } u. { N } ) i^i ( ( M + 1 ) ..^ N ) ) = (/) ) | 
						
							| 25 | 23 24 | bitr4i |  |-  ( ( { M , N } i^i ( ( M + 1 ) ..^ N ) ) = (/) <-> ( ( { M } i^i ( ( M + 1 ) ..^ N ) ) = (/) /\ ( { N } i^i ( ( M + 1 ) ..^ N ) ) = (/) ) ) | 
						
							| 26 | 13 20 25 | sylanbrc |  |-  ( M e. ZZ -> ( { M , N } i^i ( ( M + 1 ) ..^ N ) ) = (/) ) |