Step |
Hyp |
Ref |
Expression |
1 |
|
elfz3 |
|- ( M e. ZZ -> M e. ( M ... M ) ) |
2 |
|
fznuz |
|- ( M e. ( M ... M ) -> -. M e. ( ZZ>= ` ( M + 1 ) ) ) |
3 |
1 2
|
syl |
|- ( M e. ZZ -> -. M e. ( ZZ>= ` ( M + 1 ) ) ) |
4 |
3
|
3mix1d |
|- ( M e. ZZ -> ( -. M e. ( ZZ>= ` ( M + 1 ) ) \/ -. N e. ZZ \/ -. M < N ) ) |
5 |
|
3ianor |
|- ( -. ( M e. ( ZZ>= ` ( M + 1 ) ) /\ N e. ZZ /\ M < N ) <-> ( -. M e. ( ZZ>= ` ( M + 1 ) ) \/ -. N e. ZZ \/ -. M < N ) ) |
6 |
|
elfzo2 |
|- ( M e. ( ( M + 1 ) ..^ N ) <-> ( M e. ( ZZ>= ` ( M + 1 ) ) /\ N e. ZZ /\ M < N ) ) |
7 |
5 6
|
xchnxbir |
|- ( -. M e. ( ( M + 1 ) ..^ N ) <-> ( -. M e. ( ZZ>= ` ( M + 1 ) ) \/ -. N e. ZZ \/ -. M < N ) ) |
8 |
4 7
|
sylibr |
|- ( M e. ZZ -> -. M e. ( ( M + 1 ) ..^ N ) ) |
9 |
|
incom |
|- ( { M } i^i ( ( M + 1 ) ..^ N ) ) = ( ( ( M + 1 ) ..^ N ) i^i { M } ) |
10 |
9
|
eqeq1i |
|- ( ( { M } i^i ( ( M + 1 ) ..^ N ) ) = (/) <-> ( ( ( M + 1 ) ..^ N ) i^i { M } ) = (/) ) |
11 |
|
disjsn |
|- ( ( ( ( M + 1 ) ..^ N ) i^i { M } ) = (/) <-> -. M e. ( ( M + 1 ) ..^ N ) ) |
12 |
10 11
|
bitri |
|- ( ( { M } i^i ( ( M + 1 ) ..^ N ) ) = (/) <-> -. M e. ( ( M + 1 ) ..^ N ) ) |
13 |
8 12
|
sylibr |
|- ( M e. ZZ -> ( { M } i^i ( ( M + 1 ) ..^ N ) ) = (/) ) |
14 |
|
fzonel |
|- -. N e. ( ( M + 1 ) ..^ N ) |
15 |
14
|
a1i |
|- ( M e. ZZ -> -. N e. ( ( M + 1 ) ..^ N ) ) |
16 |
|
incom |
|- ( { N } i^i ( ( M + 1 ) ..^ N ) ) = ( ( ( M + 1 ) ..^ N ) i^i { N } ) |
17 |
16
|
eqeq1i |
|- ( ( { N } i^i ( ( M + 1 ) ..^ N ) ) = (/) <-> ( ( ( M + 1 ) ..^ N ) i^i { N } ) = (/) ) |
18 |
|
disjsn |
|- ( ( ( ( M + 1 ) ..^ N ) i^i { N } ) = (/) <-> -. N e. ( ( M + 1 ) ..^ N ) ) |
19 |
17 18
|
bitri |
|- ( ( { N } i^i ( ( M + 1 ) ..^ N ) ) = (/) <-> -. N e. ( ( M + 1 ) ..^ N ) ) |
20 |
15 19
|
sylibr |
|- ( M e. ZZ -> ( { N } i^i ( ( M + 1 ) ..^ N ) ) = (/) ) |
21 |
|
df-pr |
|- { M , N } = ( { M } u. { N } ) |
22 |
21
|
ineq1i |
|- ( { M , N } i^i ( ( M + 1 ) ..^ N ) ) = ( ( { M } u. { N } ) i^i ( ( M + 1 ) ..^ N ) ) |
23 |
22
|
eqeq1i |
|- ( ( { M , N } i^i ( ( M + 1 ) ..^ N ) ) = (/) <-> ( ( { M } u. { N } ) i^i ( ( M + 1 ) ..^ N ) ) = (/) ) |
24 |
|
undisj1 |
|- ( ( ( { M } i^i ( ( M + 1 ) ..^ N ) ) = (/) /\ ( { N } i^i ( ( M + 1 ) ..^ N ) ) = (/) ) <-> ( ( { M } u. { N } ) i^i ( ( M + 1 ) ..^ N ) ) = (/) ) |
25 |
23 24
|
bitr4i |
|- ( ( { M , N } i^i ( ( M + 1 ) ..^ N ) ) = (/) <-> ( ( { M } i^i ( ( M + 1 ) ..^ N ) ) = (/) /\ ( { N } i^i ( ( M + 1 ) ..^ N ) ) = (/) ) ) |
26 |
13 20 25
|
sylanbrc |
|- ( M e. ZZ -> ( { M , N } i^i ( ( M + 1 ) ..^ N ) ) = (/) ) |