Metamath Proof Explorer


Theorem prlem1

Description: A specialized lemma for set theory (to derive the Axiom of Pairing). (Contributed by NM, 18-Oct-1995) (Proof shortened by Andrew Salmon, 13-May-2011) (Proof shortened by Wolf Lammen, 5-Jan-2013)

Ref Expression
Hypotheses prlem1.1
|- ( ph -> ( et <-> ch ) )
prlem1.2
|- ( ps -> -. th )
Assertion prlem1
|- ( ph -> ( ps -> ( ( ( ps /\ ch ) \/ ( th /\ ta ) ) -> et ) ) )

Proof

Step Hyp Ref Expression
1 prlem1.1
 |-  ( ph -> ( et <-> ch ) )
2 prlem1.2
 |-  ( ps -> -. th )
3 1 biimprd
 |-  ( ph -> ( ch -> et ) )
4 3 adantld
 |-  ( ph -> ( ( ps /\ ch ) -> et ) )
5 2 pm2.21d
 |-  ( ps -> ( th -> et ) )
6 5 adantrd
 |-  ( ps -> ( ( th /\ ta ) -> et ) )
7 4 6 jaao
 |-  ( ( ph /\ ps ) -> ( ( ( ps /\ ch ) \/ ( th /\ ta ) ) -> et ) )
8 7 ex
 |-  ( ph -> ( ps -> ( ( ( ps /\ ch ) \/ ( th /\ ta ) ) -> et ) ) )