Description: A specialized lemma for set theory (to derive the Axiom of Pairing). (Contributed by NM, 21-Jun-1993) (Proof shortened by Andrew Salmon, 13-May-2011) (Proof shortened by Wolf Lammen, 9-Dec-2012)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | prlem2 | |- ( ( ( ph /\ ps ) \/ ( ch /\ th ) ) <-> ( ( ph \/ ch ) /\ ( ( ph /\ ps ) \/ ( ch /\ th ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | |- ( ( ph /\ ps ) -> ph ) |
|
| 2 | simpl | |- ( ( ch /\ th ) -> ch ) |
|
| 3 | 1 2 | orim12i | |- ( ( ( ph /\ ps ) \/ ( ch /\ th ) ) -> ( ph \/ ch ) ) |
| 4 | 3 | pm4.71ri | |- ( ( ( ph /\ ps ) \/ ( ch /\ th ) ) <-> ( ( ph \/ ch ) /\ ( ( ph /\ ps ) \/ ( ch /\ th ) ) ) ) |