Step |
Hyp |
Ref |
Expression |
1 |
|
ax-1 |
|- ( ( P = 2 \/ P = 3 \/ P e. ( ZZ>= ` 5 ) ) -> ( P e. Prime -> ( P = 2 \/ P = 3 \/ P e. ( ZZ>= ` 5 ) ) ) ) |
2 |
|
3ioran |
|- ( -. ( P = 2 \/ P = 3 \/ P e. ( ZZ>= ` 5 ) ) <-> ( -. P = 2 /\ -. P = 3 /\ -. P e. ( ZZ>= ` 5 ) ) ) |
3 |
|
3ianor |
|- ( -. ( 5 e. ZZ /\ P e. ZZ /\ 5 <_ P ) <-> ( -. 5 e. ZZ \/ -. P e. ZZ \/ -. 5 <_ P ) ) |
4 |
|
eluz2 |
|- ( P e. ( ZZ>= ` 5 ) <-> ( 5 e. ZZ /\ P e. ZZ /\ 5 <_ P ) ) |
5 |
3 4
|
xchnxbir |
|- ( -. P e. ( ZZ>= ` 5 ) <-> ( -. 5 e. ZZ \/ -. P e. ZZ \/ -. 5 <_ P ) ) |
6 |
|
5nn |
|- 5 e. NN |
7 |
6
|
nnzi |
|- 5 e. ZZ |
8 |
7
|
pm2.24i |
|- ( -. 5 e. ZZ -> ( ( -. P = 2 /\ -. P = 3 ) -> ( P e. Prime -> ( P = 2 \/ P = 3 \/ P e. ( ZZ>= ` 5 ) ) ) ) ) |
9 |
|
pm2.24 |
|- ( P e. ZZ -> ( -. P e. ZZ -> ( P = 2 \/ P = 3 \/ P e. ( ZZ>= ` 5 ) ) ) ) |
10 |
|
prmz |
|- ( P e. Prime -> P e. ZZ ) |
11 |
9 10
|
syl11 |
|- ( -. P e. ZZ -> ( P e. Prime -> ( P = 2 \/ P = 3 \/ P e. ( ZZ>= ` 5 ) ) ) ) |
12 |
11
|
a1d |
|- ( -. P e. ZZ -> ( ( -. P = 2 /\ -. P = 3 ) -> ( P e. Prime -> ( P = 2 \/ P = 3 \/ P e. ( ZZ>= ` 5 ) ) ) ) ) |
13 |
10
|
zred |
|- ( P e. Prime -> P e. RR ) |
14 |
|
5re |
|- 5 e. RR |
15 |
14
|
a1i |
|- ( P e. Prime -> 5 e. RR ) |
16 |
13 15
|
ltnled |
|- ( P e. Prime -> ( P < 5 <-> -. 5 <_ P ) ) |
17 |
|
prm23lt5 |
|- ( ( P e. Prime /\ P < 5 ) -> ( P = 2 \/ P = 3 ) ) |
18 |
|
ioran |
|- ( -. ( P = 2 \/ P = 3 ) <-> ( -. P = 2 /\ -. P = 3 ) ) |
19 |
|
pm2.24 |
|- ( ( P = 2 \/ P = 3 ) -> ( -. ( P = 2 \/ P = 3 ) -> ( P = 2 \/ P = 3 \/ P e. ( ZZ>= ` 5 ) ) ) ) |
20 |
18 19
|
syl5bir |
|- ( ( P = 2 \/ P = 3 ) -> ( ( -. P = 2 /\ -. P = 3 ) -> ( P = 2 \/ P = 3 \/ P e. ( ZZ>= ` 5 ) ) ) ) |
21 |
17 20
|
syl |
|- ( ( P e. Prime /\ P < 5 ) -> ( ( -. P = 2 /\ -. P = 3 ) -> ( P = 2 \/ P = 3 \/ P e. ( ZZ>= ` 5 ) ) ) ) |
22 |
21
|
ex |
|- ( P e. Prime -> ( P < 5 -> ( ( -. P = 2 /\ -. P = 3 ) -> ( P = 2 \/ P = 3 \/ P e. ( ZZ>= ` 5 ) ) ) ) ) |
23 |
16 22
|
sylbird |
|- ( P e. Prime -> ( -. 5 <_ P -> ( ( -. P = 2 /\ -. P = 3 ) -> ( P = 2 \/ P = 3 \/ P e. ( ZZ>= ` 5 ) ) ) ) ) |
24 |
23
|
com3l |
|- ( -. 5 <_ P -> ( ( -. P = 2 /\ -. P = 3 ) -> ( P e. Prime -> ( P = 2 \/ P = 3 \/ P e. ( ZZ>= ` 5 ) ) ) ) ) |
25 |
8 12 24
|
3jaoi |
|- ( ( -. 5 e. ZZ \/ -. P e. ZZ \/ -. 5 <_ P ) -> ( ( -. P = 2 /\ -. P = 3 ) -> ( P e. Prime -> ( P = 2 \/ P = 3 \/ P e. ( ZZ>= ` 5 ) ) ) ) ) |
26 |
5 25
|
sylbi |
|- ( -. P e. ( ZZ>= ` 5 ) -> ( ( -. P = 2 /\ -. P = 3 ) -> ( P e. Prime -> ( P = 2 \/ P = 3 \/ P e. ( ZZ>= ` 5 ) ) ) ) ) |
27 |
26
|
com12 |
|- ( ( -. P = 2 /\ -. P = 3 ) -> ( -. P e. ( ZZ>= ` 5 ) -> ( P e. Prime -> ( P = 2 \/ P = 3 \/ P e. ( ZZ>= ` 5 ) ) ) ) ) |
28 |
27
|
3impia |
|- ( ( -. P = 2 /\ -. P = 3 /\ -. P e. ( ZZ>= ` 5 ) ) -> ( P e. Prime -> ( P = 2 \/ P = 3 \/ P e. ( ZZ>= ` 5 ) ) ) ) |
29 |
2 28
|
sylbi |
|- ( -. ( P = 2 \/ P = 3 \/ P e. ( ZZ>= ` 5 ) ) -> ( P e. Prime -> ( P = 2 \/ P = 3 \/ P e. ( ZZ>= ` 5 ) ) ) ) |
30 |
1 29
|
pm2.61i |
|- ( P e. Prime -> ( P = 2 \/ P = 3 \/ P e. ( ZZ>= ` 5 ) ) ) |