Step |
Hyp |
Ref |
Expression |
1 |
|
prmnn |
|- ( P e. Prime -> P e. NN ) |
2 |
1
|
nnnn0d |
|- ( P e. Prime -> P e. NN0 ) |
3 |
2
|
adantr |
|- ( ( P e. Prime /\ P < 5 ) -> P e. NN0 ) |
4 |
|
4nn0 |
|- 4 e. NN0 |
5 |
4
|
a1i |
|- ( ( P e. Prime /\ P < 5 ) -> 4 e. NN0 ) |
6 |
|
df-5 |
|- 5 = ( 4 + 1 ) |
7 |
6
|
breq2i |
|- ( P < 5 <-> P < ( 4 + 1 ) ) |
8 |
|
prmz |
|- ( P e. Prime -> P e. ZZ ) |
9 |
|
4z |
|- 4 e. ZZ |
10 |
|
zleltp1 |
|- ( ( P e. ZZ /\ 4 e. ZZ ) -> ( P <_ 4 <-> P < ( 4 + 1 ) ) ) |
11 |
8 9 10
|
sylancl |
|- ( P e. Prime -> ( P <_ 4 <-> P < ( 4 + 1 ) ) ) |
12 |
11
|
biimprd |
|- ( P e. Prime -> ( P < ( 4 + 1 ) -> P <_ 4 ) ) |
13 |
7 12
|
syl5bi |
|- ( P e. Prime -> ( P < 5 -> P <_ 4 ) ) |
14 |
13
|
imp |
|- ( ( P e. Prime /\ P < 5 ) -> P <_ 4 ) |
15 |
|
elfz2nn0 |
|- ( P e. ( 0 ... 4 ) <-> ( P e. NN0 /\ 4 e. NN0 /\ P <_ 4 ) ) |
16 |
3 5 14 15
|
syl3anbrc |
|- ( ( P e. Prime /\ P < 5 ) -> P e. ( 0 ... 4 ) ) |
17 |
|
fz0to4untppr |
|- ( 0 ... 4 ) = ( { 0 , 1 , 2 } u. { 3 , 4 } ) |
18 |
17
|
eleq2i |
|- ( P e. ( 0 ... 4 ) <-> P e. ( { 0 , 1 , 2 } u. { 3 , 4 } ) ) |
19 |
|
elun |
|- ( P e. ( { 0 , 1 , 2 } u. { 3 , 4 } ) <-> ( P e. { 0 , 1 , 2 } \/ P e. { 3 , 4 } ) ) |
20 |
|
eltpi |
|- ( P e. { 0 , 1 , 2 } -> ( P = 0 \/ P = 1 \/ P = 2 ) ) |
21 |
|
nnne0 |
|- ( P e. NN -> P =/= 0 ) |
22 |
|
eqneqall |
|- ( P = 0 -> ( P =/= 0 -> ( P = 2 \/ P = 3 ) ) ) |
23 |
22
|
com12 |
|- ( P =/= 0 -> ( P = 0 -> ( P = 2 \/ P = 3 ) ) ) |
24 |
1 21 23
|
3syl |
|- ( P e. Prime -> ( P = 0 -> ( P = 2 \/ P = 3 ) ) ) |
25 |
24
|
com12 |
|- ( P = 0 -> ( P e. Prime -> ( P = 2 \/ P = 3 ) ) ) |
26 |
|
eleq1 |
|- ( P = 1 -> ( P e. Prime <-> 1 e. Prime ) ) |
27 |
|
1nprm |
|- -. 1 e. Prime |
28 |
27
|
pm2.21i |
|- ( 1 e. Prime -> ( P = 2 \/ P = 3 ) ) |
29 |
26 28
|
syl6bi |
|- ( P = 1 -> ( P e. Prime -> ( P = 2 \/ P = 3 ) ) ) |
30 |
|
orc |
|- ( P = 2 -> ( P = 2 \/ P = 3 ) ) |
31 |
30
|
a1d |
|- ( P = 2 -> ( P e. Prime -> ( P = 2 \/ P = 3 ) ) ) |
32 |
25 29 31
|
3jaoi |
|- ( ( P = 0 \/ P = 1 \/ P = 2 ) -> ( P e. Prime -> ( P = 2 \/ P = 3 ) ) ) |
33 |
20 32
|
syl |
|- ( P e. { 0 , 1 , 2 } -> ( P e. Prime -> ( P = 2 \/ P = 3 ) ) ) |
34 |
|
elpri |
|- ( P e. { 3 , 4 } -> ( P = 3 \/ P = 4 ) ) |
35 |
|
olc |
|- ( P = 3 -> ( P = 2 \/ P = 3 ) ) |
36 |
35
|
a1d |
|- ( P = 3 -> ( P e. Prime -> ( P = 2 \/ P = 3 ) ) ) |
37 |
|
eleq1 |
|- ( P = 4 -> ( P e. Prime <-> 4 e. Prime ) ) |
38 |
|
4nprm |
|- -. 4 e. Prime |
39 |
38
|
pm2.21i |
|- ( 4 e. Prime -> ( P = 2 \/ P = 3 ) ) |
40 |
37 39
|
syl6bi |
|- ( P = 4 -> ( P e. Prime -> ( P = 2 \/ P = 3 ) ) ) |
41 |
36 40
|
jaoi |
|- ( ( P = 3 \/ P = 4 ) -> ( P e. Prime -> ( P = 2 \/ P = 3 ) ) ) |
42 |
34 41
|
syl |
|- ( P e. { 3 , 4 } -> ( P e. Prime -> ( P = 2 \/ P = 3 ) ) ) |
43 |
33 42
|
jaoi |
|- ( ( P e. { 0 , 1 , 2 } \/ P e. { 3 , 4 } ) -> ( P e. Prime -> ( P = 2 \/ P = 3 ) ) ) |
44 |
19 43
|
sylbi |
|- ( P e. ( { 0 , 1 , 2 } u. { 3 , 4 } ) -> ( P e. Prime -> ( P = 2 \/ P = 3 ) ) ) |
45 |
44
|
com12 |
|- ( P e. Prime -> ( P e. ( { 0 , 1 , 2 } u. { 3 , 4 } ) -> ( P = 2 \/ P = 3 ) ) ) |
46 |
45
|
adantr |
|- ( ( P e. Prime /\ P < 5 ) -> ( P e. ( { 0 , 1 , 2 } u. { 3 , 4 } ) -> ( P = 2 \/ P = 3 ) ) ) |
47 |
18 46
|
syl5bi |
|- ( ( P e. Prime /\ P < 5 ) -> ( P e. ( 0 ... 4 ) -> ( P = 2 \/ P = 3 ) ) ) |
48 |
16 47
|
mpd |
|- ( ( P e. Prime /\ P < 5 ) -> ( P = 2 \/ P = 3 ) ) |