Step |
Hyp |
Ref |
Expression |
1 |
|
2nn |
|- 2 e. NN |
2 |
|
dvdsprime |
|- ( ( P e. Prime /\ 2 e. NN ) -> ( 2 || P <-> ( 2 = P \/ 2 = 1 ) ) ) |
3 |
1 2
|
mpan2 |
|- ( P e. Prime -> ( 2 || P <-> ( 2 = P \/ 2 = 1 ) ) ) |
4 |
|
eqcom |
|- ( 2 = P <-> P = 2 ) |
5 |
4
|
biimpi |
|- ( 2 = P -> P = 2 ) |
6 |
|
1ne2 |
|- 1 =/= 2 |
7 |
|
necom |
|- ( 1 =/= 2 <-> 2 =/= 1 ) |
8 |
|
eqneqall |
|- ( 2 = 1 -> ( 2 =/= 1 -> P = 2 ) ) |
9 |
8
|
com12 |
|- ( 2 =/= 1 -> ( 2 = 1 -> P = 2 ) ) |
10 |
7 9
|
sylbi |
|- ( 1 =/= 2 -> ( 2 = 1 -> P = 2 ) ) |
11 |
6 10
|
ax-mp |
|- ( 2 = 1 -> P = 2 ) |
12 |
5 11
|
jaoi |
|- ( ( 2 = P \/ 2 = 1 ) -> P = 2 ) |
13 |
3 12
|
syl6bi |
|- ( P e. Prime -> ( 2 || P -> P = 2 ) ) |
14 |
13
|
con3d |
|- ( P e. Prime -> ( -. P = 2 -> -. 2 || P ) ) |
15 |
14
|
orrd |
|- ( P e. Prime -> ( P = 2 \/ -. 2 || P ) ) |