Step |
Hyp |
Ref |
Expression |
1 |
|
cygctb.1 |
|- B = ( Base ` G ) |
2 |
|
1nprm |
|- -. 1 e. Prime |
3 |
|
simpr |
|- ( ( ( G e. Grp /\ ( # ` B ) e. Prime ) /\ B C_ { ( 0g ` G ) } ) -> B C_ { ( 0g ` G ) } ) |
4 |
|
eqid |
|- ( 0g ` G ) = ( 0g ` G ) |
5 |
1 4
|
grpidcl |
|- ( G e. Grp -> ( 0g ` G ) e. B ) |
6 |
5
|
snssd |
|- ( G e. Grp -> { ( 0g ` G ) } C_ B ) |
7 |
6
|
ad2antrr |
|- ( ( ( G e. Grp /\ ( # ` B ) e. Prime ) /\ B C_ { ( 0g ` G ) } ) -> { ( 0g ` G ) } C_ B ) |
8 |
3 7
|
eqssd |
|- ( ( ( G e. Grp /\ ( # ` B ) e. Prime ) /\ B C_ { ( 0g ` G ) } ) -> B = { ( 0g ` G ) } ) |
9 |
8
|
fveq2d |
|- ( ( ( G e. Grp /\ ( # ` B ) e. Prime ) /\ B C_ { ( 0g ` G ) } ) -> ( # ` B ) = ( # ` { ( 0g ` G ) } ) ) |
10 |
|
fvex |
|- ( 0g ` G ) e. _V |
11 |
|
hashsng |
|- ( ( 0g ` G ) e. _V -> ( # ` { ( 0g ` G ) } ) = 1 ) |
12 |
10 11
|
ax-mp |
|- ( # ` { ( 0g ` G ) } ) = 1 |
13 |
9 12
|
eqtrdi |
|- ( ( ( G e. Grp /\ ( # ` B ) e. Prime ) /\ B C_ { ( 0g ` G ) } ) -> ( # ` B ) = 1 ) |
14 |
|
simplr |
|- ( ( ( G e. Grp /\ ( # ` B ) e. Prime ) /\ B C_ { ( 0g ` G ) } ) -> ( # ` B ) e. Prime ) |
15 |
13 14
|
eqeltrrd |
|- ( ( ( G e. Grp /\ ( # ` B ) e. Prime ) /\ B C_ { ( 0g ` G ) } ) -> 1 e. Prime ) |
16 |
15
|
ex |
|- ( ( G e. Grp /\ ( # ` B ) e. Prime ) -> ( B C_ { ( 0g ` G ) } -> 1 e. Prime ) ) |
17 |
2 16
|
mtoi |
|- ( ( G e. Grp /\ ( # ` B ) e. Prime ) -> -. B C_ { ( 0g ` G ) } ) |
18 |
|
nss |
|- ( -. B C_ { ( 0g ` G ) } <-> E. x ( x e. B /\ -. x e. { ( 0g ` G ) } ) ) |
19 |
17 18
|
sylib |
|- ( ( G e. Grp /\ ( # ` B ) e. Prime ) -> E. x ( x e. B /\ -. x e. { ( 0g ` G ) } ) ) |
20 |
|
eqid |
|- ( od ` G ) = ( od ` G ) |
21 |
|
simpll |
|- ( ( ( G e. Grp /\ ( # ` B ) e. Prime ) /\ ( x e. B /\ -. x e. { ( 0g ` G ) } ) ) -> G e. Grp ) |
22 |
|
simprl |
|- ( ( ( G e. Grp /\ ( # ` B ) e. Prime ) /\ ( x e. B /\ -. x e. { ( 0g ` G ) } ) ) -> x e. B ) |
23 |
|
simprr |
|- ( ( ( G e. Grp /\ ( # ` B ) e. Prime ) /\ ( x e. B /\ -. x e. { ( 0g ` G ) } ) ) -> -. x e. { ( 0g ` G ) } ) |
24 |
20 4 1
|
odeq1 |
|- ( ( G e. Grp /\ x e. B ) -> ( ( ( od ` G ) ` x ) = 1 <-> x = ( 0g ` G ) ) ) |
25 |
21 22 24
|
syl2anc |
|- ( ( ( G e. Grp /\ ( # ` B ) e. Prime ) /\ ( x e. B /\ -. x e. { ( 0g ` G ) } ) ) -> ( ( ( od ` G ) ` x ) = 1 <-> x = ( 0g ` G ) ) ) |
26 |
|
velsn |
|- ( x e. { ( 0g ` G ) } <-> x = ( 0g ` G ) ) |
27 |
25 26
|
bitr4di |
|- ( ( ( G e. Grp /\ ( # ` B ) e. Prime ) /\ ( x e. B /\ -. x e. { ( 0g ` G ) } ) ) -> ( ( ( od ` G ) ` x ) = 1 <-> x e. { ( 0g ` G ) } ) ) |
28 |
23 27
|
mtbird |
|- ( ( ( G e. Grp /\ ( # ` B ) e. Prime ) /\ ( x e. B /\ -. x e. { ( 0g ` G ) } ) ) -> -. ( ( od ` G ) ` x ) = 1 ) |
29 |
|
prmnn |
|- ( ( # ` B ) e. Prime -> ( # ` B ) e. NN ) |
30 |
29
|
ad2antlr |
|- ( ( ( G e. Grp /\ ( # ` B ) e. Prime ) /\ ( x e. B /\ -. x e. { ( 0g ` G ) } ) ) -> ( # ` B ) e. NN ) |
31 |
30
|
nnnn0d |
|- ( ( ( G e. Grp /\ ( # ` B ) e. Prime ) /\ ( x e. B /\ -. x e. { ( 0g ` G ) } ) ) -> ( # ` B ) e. NN0 ) |
32 |
1
|
fvexi |
|- B e. _V |
33 |
|
hashclb |
|- ( B e. _V -> ( B e. Fin <-> ( # ` B ) e. NN0 ) ) |
34 |
32 33
|
ax-mp |
|- ( B e. Fin <-> ( # ` B ) e. NN0 ) |
35 |
31 34
|
sylibr |
|- ( ( ( G e. Grp /\ ( # ` B ) e. Prime ) /\ ( x e. B /\ -. x e. { ( 0g ` G ) } ) ) -> B e. Fin ) |
36 |
1 20
|
oddvds2 |
|- ( ( G e. Grp /\ B e. Fin /\ x e. B ) -> ( ( od ` G ) ` x ) || ( # ` B ) ) |
37 |
21 35 22 36
|
syl3anc |
|- ( ( ( G e. Grp /\ ( # ` B ) e. Prime ) /\ ( x e. B /\ -. x e. { ( 0g ` G ) } ) ) -> ( ( od ` G ) ` x ) || ( # ` B ) ) |
38 |
|
simplr |
|- ( ( ( G e. Grp /\ ( # ` B ) e. Prime ) /\ ( x e. B /\ -. x e. { ( 0g ` G ) } ) ) -> ( # ` B ) e. Prime ) |
39 |
1 20
|
odcl2 |
|- ( ( G e. Grp /\ B e. Fin /\ x e. B ) -> ( ( od ` G ) ` x ) e. NN ) |
40 |
21 35 22 39
|
syl3anc |
|- ( ( ( G e. Grp /\ ( # ` B ) e. Prime ) /\ ( x e. B /\ -. x e. { ( 0g ` G ) } ) ) -> ( ( od ` G ) ` x ) e. NN ) |
41 |
|
dvdsprime |
|- ( ( ( # ` B ) e. Prime /\ ( ( od ` G ) ` x ) e. NN ) -> ( ( ( od ` G ) ` x ) || ( # ` B ) <-> ( ( ( od ` G ) ` x ) = ( # ` B ) \/ ( ( od ` G ) ` x ) = 1 ) ) ) |
42 |
38 40 41
|
syl2anc |
|- ( ( ( G e. Grp /\ ( # ` B ) e. Prime ) /\ ( x e. B /\ -. x e. { ( 0g ` G ) } ) ) -> ( ( ( od ` G ) ` x ) || ( # ` B ) <-> ( ( ( od ` G ) ` x ) = ( # ` B ) \/ ( ( od ` G ) ` x ) = 1 ) ) ) |
43 |
37 42
|
mpbid |
|- ( ( ( G e. Grp /\ ( # ` B ) e. Prime ) /\ ( x e. B /\ -. x e. { ( 0g ` G ) } ) ) -> ( ( ( od ` G ) ` x ) = ( # ` B ) \/ ( ( od ` G ) ` x ) = 1 ) ) |
44 |
43
|
ord |
|- ( ( ( G e. Grp /\ ( # ` B ) e. Prime ) /\ ( x e. B /\ -. x e. { ( 0g ` G ) } ) ) -> ( -. ( ( od ` G ) ` x ) = ( # ` B ) -> ( ( od ` G ) ` x ) = 1 ) ) |
45 |
28 44
|
mt3d |
|- ( ( ( G e. Grp /\ ( # ` B ) e. Prime ) /\ ( x e. B /\ -. x e. { ( 0g ` G ) } ) ) -> ( ( od ` G ) ` x ) = ( # ` B ) ) |
46 |
1 20 21 22 45
|
iscygodd |
|- ( ( ( G e. Grp /\ ( # ` B ) e. Prime ) /\ ( x e. B /\ -. x e. { ( 0g ` G ) } ) ) -> G e. CycGrp ) |
47 |
19 46
|
exlimddv |
|- ( ( G e. Grp /\ ( # ` B ) e. Prime ) -> G e. CycGrp ) |