| Step | Hyp | Ref | Expression | 
						
							| 1 |  | prmdiv.1 |  |-  R = ( ( A ^ ( P - 2 ) ) mod P ) | 
						
							| 2 |  | nprmdvds1 |  |-  ( P e. Prime -> -. P || 1 ) | 
						
							| 3 | 2 | 3ad2ant1 |  |-  ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> -. P || 1 ) | 
						
							| 4 |  | prmz |  |-  ( P e. Prime -> P e. ZZ ) | 
						
							| 5 | 4 | 3ad2ant1 |  |-  ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> P e. ZZ ) | 
						
							| 6 |  | simp2 |  |-  ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> A e. ZZ ) | 
						
							| 7 |  | phiprm |  |-  ( P e. Prime -> ( phi ` P ) = ( P - 1 ) ) | 
						
							| 8 | 7 | 3ad2ant1 |  |-  ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( phi ` P ) = ( P - 1 ) ) | 
						
							| 9 |  | prmnn |  |-  ( P e. Prime -> P e. NN ) | 
						
							| 10 | 9 | 3ad2ant1 |  |-  ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> P e. NN ) | 
						
							| 11 |  | nnm1nn0 |  |-  ( P e. NN -> ( P - 1 ) e. NN0 ) | 
						
							| 12 | 10 11 | syl |  |-  ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( P - 1 ) e. NN0 ) | 
						
							| 13 | 8 12 | eqeltrd |  |-  ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( phi ` P ) e. NN0 ) | 
						
							| 14 |  | zexpcl |  |-  ( ( A e. ZZ /\ ( phi ` P ) e. NN0 ) -> ( A ^ ( phi ` P ) ) e. ZZ ) | 
						
							| 15 | 6 13 14 | syl2anc |  |-  ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( A ^ ( phi ` P ) ) e. ZZ ) | 
						
							| 16 |  | 1z |  |-  1 e. ZZ | 
						
							| 17 |  | zsubcl |  |-  ( ( ( A ^ ( phi ` P ) ) e. ZZ /\ 1 e. ZZ ) -> ( ( A ^ ( phi ` P ) ) - 1 ) e. ZZ ) | 
						
							| 18 | 15 16 17 | sylancl |  |-  ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( ( A ^ ( phi ` P ) ) - 1 ) e. ZZ ) | 
						
							| 19 |  | prmuz2 |  |-  ( P e. Prime -> P e. ( ZZ>= ` 2 ) ) | 
						
							| 20 | 19 | 3ad2ant1 |  |-  ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> P e. ( ZZ>= ` 2 ) ) | 
						
							| 21 |  | uznn0sub |  |-  ( P e. ( ZZ>= ` 2 ) -> ( P - 2 ) e. NN0 ) | 
						
							| 22 | 20 21 | syl |  |-  ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( P - 2 ) e. NN0 ) | 
						
							| 23 |  | zexpcl |  |-  ( ( A e. ZZ /\ ( P - 2 ) e. NN0 ) -> ( A ^ ( P - 2 ) ) e. ZZ ) | 
						
							| 24 | 6 22 23 | syl2anc |  |-  ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( A ^ ( P - 2 ) ) e. ZZ ) | 
						
							| 25 | 24 | zred |  |-  ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( A ^ ( P - 2 ) ) e. RR ) | 
						
							| 26 | 25 10 | nndivred |  |-  ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( ( A ^ ( P - 2 ) ) / P ) e. RR ) | 
						
							| 27 | 26 | flcld |  |-  ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( |_ ` ( ( A ^ ( P - 2 ) ) / P ) ) e. ZZ ) | 
						
							| 28 | 6 27 | zmulcld |  |-  ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( A x. ( |_ ` ( ( A ^ ( P - 2 ) ) / P ) ) ) e. ZZ ) | 
						
							| 29 | 5 28 | zmulcld |  |-  ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( P x. ( A x. ( |_ ` ( ( A ^ ( P - 2 ) ) / P ) ) ) ) e. ZZ ) | 
						
							| 30 | 6 5 | gcdcomd |  |-  ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( A gcd P ) = ( P gcd A ) ) | 
						
							| 31 |  | coprm |  |-  ( ( P e. Prime /\ A e. ZZ ) -> ( -. P || A <-> ( P gcd A ) = 1 ) ) | 
						
							| 32 | 31 | biimp3a |  |-  ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( P gcd A ) = 1 ) | 
						
							| 33 | 30 32 | eqtrd |  |-  ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( A gcd P ) = 1 ) | 
						
							| 34 |  | eulerth |  |-  ( ( P e. NN /\ A e. ZZ /\ ( A gcd P ) = 1 ) -> ( ( A ^ ( phi ` P ) ) mod P ) = ( 1 mod P ) ) | 
						
							| 35 | 10 6 33 34 | syl3anc |  |-  ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( ( A ^ ( phi ` P ) ) mod P ) = ( 1 mod P ) ) | 
						
							| 36 |  | 1zzd |  |-  ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> 1 e. ZZ ) | 
						
							| 37 |  | moddvds |  |-  ( ( P e. NN /\ ( A ^ ( phi ` P ) ) e. ZZ /\ 1 e. ZZ ) -> ( ( ( A ^ ( phi ` P ) ) mod P ) = ( 1 mod P ) <-> P || ( ( A ^ ( phi ` P ) ) - 1 ) ) ) | 
						
							| 38 | 10 15 36 37 | syl3anc |  |-  ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( ( ( A ^ ( phi ` P ) ) mod P ) = ( 1 mod P ) <-> P || ( ( A ^ ( phi ` P ) ) - 1 ) ) ) | 
						
							| 39 | 35 38 | mpbid |  |-  ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> P || ( ( A ^ ( phi ` P ) ) - 1 ) ) | 
						
							| 40 |  | dvdsmul1 |  |-  ( ( P e. ZZ /\ ( A x. ( |_ ` ( ( A ^ ( P - 2 ) ) / P ) ) ) e. ZZ ) -> P || ( P x. ( A x. ( |_ ` ( ( A ^ ( P - 2 ) ) / P ) ) ) ) ) | 
						
							| 41 | 5 28 40 | syl2anc |  |-  ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> P || ( P x. ( A x. ( |_ ` ( ( A ^ ( P - 2 ) ) / P ) ) ) ) ) | 
						
							| 42 | 5 18 29 39 41 | dvds2subd |  |-  ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> P || ( ( ( A ^ ( phi ` P ) ) - 1 ) - ( P x. ( A x. ( |_ ` ( ( A ^ ( P - 2 ) ) / P ) ) ) ) ) ) | 
						
							| 43 | 6 | zcnd |  |-  ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> A e. CC ) | 
						
							| 44 | 24 | zcnd |  |-  ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( A ^ ( P - 2 ) ) e. CC ) | 
						
							| 45 | 5 27 | zmulcld |  |-  ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( P x. ( |_ ` ( ( A ^ ( P - 2 ) ) / P ) ) ) e. ZZ ) | 
						
							| 46 | 45 | zcnd |  |-  ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( P x. ( |_ ` ( ( A ^ ( P - 2 ) ) / P ) ) ) e. CC ) | 
						
							| 47 | 43 44 46 | subdid |  |-  ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( A x. ( ( A ^ ( P - 2 ) ) - ( P x. ( |_ ` ( ( A ^ ( P - 2 ) ) / P ) ) ) ) ) = ( ( A x. ( A ^ ( P - 2 ) ) ) - ( A x. ( P x. ( |_ ` ( ( A ^ ( P - 2 ) ) / P ) ) ) ) ) ) | 
						
							| 48 | 10 | nnrpd |  |-  ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> P e. RR+ ) | 
						
							| 49 |  | modval |  |-  ( ( ( A ^ ( P - 2 ) ) e. RR /\ P e. RR+ ) -> ( ( A ^ ( P - 2 ) ) mod P ) = ( ( A ^ ( P - 2 ) ) - ( P x. ( |_ ` ( ( A ^ ( P - 2 ) ) / P ) ) ) ) ) | 
						
							| 50 | 25 48 49 | syl2anc |  |-  ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( ( A ^ ( P - 2 ) ) mod P ) = ( ( A ^ ( P - 2 ) ) - ( P x. ( |_ ` ( ( A ^ ( P - 2 ) ) / P ) ) ) ) ) | 
						
							| 51 | 1 50 | eqtrid |  |-  ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> R = ( ( A ^ ( P - 2 ) ) - ( P x. ( |_ ` ( ( A ^ ( P - 2 ) ) / P ) ) ) ) ) | 
						
							| 52 | 51 | oveq2d |  |-  ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( A x. R ) = ( A x. ( ( A ^ ( P - 2 ) ) - ( P x. ( |_ ` ( ( A ^ ( P - 2 ) ) / P ) ) ) ) ) ) | 
						
							| 53 |  | 2m1e1 |  |-  ( 2 - 1 ) = 1 | 
						
							| 54 | 53 | oveq2i |  |-  ( P - ( 2 - 1 ) ) = ( P - 1 ) | 
						
							| 55 | 8 54 | eqtr4di |  |-  ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( phi ` P ) = ( P - ( 2 - 1 ) ) ) | 
						
							| 56 | 10 | nncnd |  |-  ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> P e. CC ) | 
						
							| 57 |  | 2cnd |  |-  ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> 2 e. CC ) | 
						
							| 58 |  | 1cnd |  |-  ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> 1 e. CC ) | 
						
							| 59 | 56 57 58 | subsubd |  |-  ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( P - ( 2 - 1 ) ) = ( ( P - 2 ) + 1 ) ) | 
						
							| 60 | 55 59 | eqtrd |  |-  ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( phi ` P ) = ( ( P - 2 ) + 1 ) ) | 
						
							| 61 | 60 | oveq2d |  |-  ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( A ^ ( phi ` P ) ) = ( A ^ ( ( P - 2 ) + 1 ) ) ) | 
						
							| 62 | 43 22 | expp1d |  |-  ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( A ^ ( ( P - 2 ) + 1 ) ) = ( ( A ^ ( P - 2 ) ) x. A ) ) | 
						
							| 63 | 44 43 | mulcomd |  |-  ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( ( A ^ ( P - 2 ) ) x. A ) = ( A x. ( A ^ ( P - 2 ) ) ) ) | 
						
							| 64 | 61 62 63 | 3eqtrd |  |-  ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( A ^ ( phi ` P ) ) = ( A x. ( A ^ ( P - 2 ) ) ) ) | 
						
							| 65 | 27 | zcnd |  |-  ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( |_ ` ( ( A ^ ( P - 2 ) ) / P ) ) e. CC ) | 
						
							| 66 | 56 43 65 | mul12d |  |-  ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( P x. ( A x. ( |_ ` ( ( A ^ ( P - 2 ) ) / P ) ) ) ) = ( A x. ( P x. ( |_ ` ( ( A ^ ( P - 2 ) ) / P ) ) ) ) ) | 
						
							| 67 | 64 66 | oveq12d |  |-  ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( ( A ^ ( phi ` P ) ) - ( P x. ( A x. ( |_ ` ( ( A ^ ( P - 2 ) ) / P ) ) ) ) ) = ( ( A x. ( A ^ ( P - 2 ) ) ) - ( A x. ( P x. ( |_ ` ( ( A ^ ( P - 2 ) ) / P ) ) ) ) ) ) | 
						
							| 68 | 47 52 67 | 3eqtr4d |  |-  ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( A x. R ) = ( ( A ^ ( phi ` P ) ) - ( P x. ( A x. ( |_ ` ( ( A ^ ( P - 2 ) ) / P ) ) ) ) ) ) | 
						
							| 69 | 68 | oveq1d |  |-  ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( ( A x. R ) - 1 ) = ( ( ( A ^ ( phi ` P ) ) - ( P x. ( A x. ( |_ ` ( ( A ^ ( P - 2 ) ) / P ) ) ) ) ) - 1 ) ) | 
						
							| 70 | 15 | zcnd |  |-  ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( A ^ ( phi ` P ) ) e. CC ) | 
						
							| 71 | 29 | zcnd |  |-  ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( P x. ( A x. ( |_ ` ( ( A ^ ( P - 2 ) ) / P ) ) ) ) e. CC ) | 
						
							| 72 | 70 71 58 | sub32d |  |-  ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( ( ( A ^ ( phi ` P ) ) - ( P x. ( A x. ( |_ ` ( ( A ^ ( P - 2 ) ) / P ) ) ) ) ) - 1 ) = ( ( ( A ^ ( phi ` P ) ) - 1 ) - ( P x. ( A x. ( |_ ` ( ( A ^ ( P - 2 ) ) / P ) ) ) ) ) ) | 
						
							| 73 | 69 72 | eqtrd |  |-  ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( ( A x. R ) - 1 ) = ( ( ( A ^ ( phi ` P ) ) - 1 ) - ( P x. ( A x. ( |_ ` ( ( A ^ ( P - 2 ) ) / P ) ) ) ) ) ) | 
						
							| 74 | 42 73 | breqtrrd |  |-  ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> P || ( ( A x. R ) - 1 ) ) | 
						
							| 75 |  | oveq2 |  |-  ( R = 0 -> ( A x. R ) = ( A x. 0 ) ) | 
						
							| 76 | 75 | oveq1d |  |-  ( R = 0 -> ( ( A x. R ) - 1 ) = ( ( A x. 0 ) - 1 ) ) | 
						
							| 77 | 76 | breq2d |  |-  ( R = 0 -> ( P || ( ( A x. R ) - 1 ) <-> P || ( ( A x. 0 ) - 1 ) ) ) | 
						
							| 78 | 74 77 | syl5ibcom |  |-  ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( R = 0 -> P || ( ( A x. 0 ) - 1 ) ) ) | 
						
							| 79 | 43 | mul01d |  |-  ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( A x. 0 ) = 0 ) | 
						
							| 80 | 79 | oveq1d |  |-  ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( ( A x. 0 ) - 1 ) = ( 0 - 1 ) ) | 
						
							| 81 |  | df-neg |  |-  -u 1 = ( 0 - 1 ) | 
						
							| 82 | 80 81 | eqtr4di |  |-  ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( ( A x. 0 ) - 1 ) = -u 1 ) | 
						
							| 83 | 82 | breq2d |  |-  ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( P || ( ( A x. 0 ) - 1 ) <-> P || -u 1 ) ) | 
						
							| 84 |  | dvdsnegb |  |-  ( ( P e. ZZ /\ 1 e. ZZ ) -> ( P || 1 <-> P || -u 1 ) ) | 
						
							| 85 | 5 16 84 | sylancl |  |-  ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( P || 1 <-> P || -u 1 ) ) | 
						
							| 86 | 83 85 | bitr4d |  |-  ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( P || ( ( A x. 0 ) - 1 ) <-> P || 1 ) ) | 
						
							| 87 | 78 86 | sylibd |  |-  ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( R = 0 -> P || 1 ) ) | 
						
							| 88 | 3 87 | mtod |  |-  ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> -. R = 0 ) | 
						
							| 89 |  | zmodfz |  |-  ( ( ( A ^ ( P - 2 ) ) e. ZZ /\ P e. NN ) -> ( ( A ^ ( P - 2 ) ) mod P ) e. ( 0 ... ( P - 1 ) ) ) | 
						
							| 90 | 24 10 89 | syl2anc |  |-  ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( ( A ^ ( P - 2 ) ) mod P ) e. ( 0 ... ( P - 1 ) ) ) | 
						
							| 91 | 1 90 | eqeltrid |  |-  ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> R e. ( 0 ... ( P - 1 ) ) ) | 
						
							| 92 |  | nn0uz |  |-  NN0 = ( ZZ>= ` 0 ) | 
						
							| 93 | 12 92 | eleqtrdi |  |-  ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( P - 1 ) e. ( ZZ>= ` 0 ) ) | 
						
							| 94 |  | elfzp12 |  |-  ( ( P - 1 ) e. ( ZZ>= ` 0 ) -> ( R e. ( 0 ... ( P - 1 ) ) <-> ( R = 0 \/ R e. ( ( 0 + 1 ) ... ( P - 1 ) ) ) ) ) | 
						
							| 95 | 93 94 | syl |  |-  ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( R e. ( 0 ... ( P - 1 ) ) <-> ( R = 0 \/ R e. ( ( 0 + 1 ) ... ( P - 1 ) ) ) ) ) | 
						
							| 96 | 91 95 | mpbid |  |-  ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( R = 0 \/ R e. ( ( 0 + 1 ) ... ( P - 1 ) ) ) ) | 
						
							| 97 | 96 | ord |  |-  ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( -. R = 0 -> R e. ( ( 0 + 1 ) ... ( P - 1 ) ) ) ) | 
						
							| 98 | 88 97 | mpd |  |-  ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> R e. ( ( 0 + 1 ) ... ( P - 1 ) ) ) | 
						
							| 99 |  | 1e0p1 |  |-  1 = ( 0 + 1 ) | 
						
							| 100 | 99 | oveq1i |  |-  ( 1 ... ( P - 1 ) ) = ( ( 0 + 1 ) ... ( P - 1 ) ) | 
						
							| 101 | 98 100 | eleqtrrdi |  |-  ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> R e. ( 1 ... ( P - 1 ) ) ) | 
						
							| 102 | 101 74 | jca |  |-  ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( R e. ( 1 ... ( P - 1 ) ) /\ P || ( ( A x. R ) - 1 ) ) ) |