| Step |
Hyp |
Ref |
Expression |
| 1 |
|
prmdiv.1 |
|- R = ( ( A ^ ( P - 2 ) ) mod P ) |
| 2 |
|
fz1ssfz0 |
|- ( 1 ... ( P - 1 ) ) C_ ( 0 ... ( P - 1 ) ) |
| 3 |
|
simpr |
|- ( ( P e. Prime /\ A e. ( 1 ... ( P - 1 ) ) ) -> A e. ( 1 ... ( P - 1 ) ) ) |
| 4 |
2 3
|
sselid |
|- ( ( P e. Prime /\ A e. ( 1 ... ( P - 1 ) ) ) -> A e. ( 0 ... ( P - 1 ) ) ) |
| 5 |
|
simpl |
|- ( ( P e. Prime /\ A e. ( 1 ... ( P - 1 ) ) ) -> P e. Prime ) |
| 6 |
|
elfznn |
|- ( A e. ( 1 ... ( P - 1 ) ) -> A e. NN ) |
| 7 |
6
|
adantl |
|- ( ( P e. Prime /\ A e. ( 1 ... ( P - 1 ) ) ) -> A e. NN ) |
| 8 |
7
|
nnzd |
|- ( ( P e. Prime /\ A e. ( 1 ... ( P - 1 ) ) ) -> A e. ZZ ) |
| 9 |
|
prmnn |
|- ( P e. Prime -> P e. NN ) |
| 10 |
|
fzm1ndvds |
|- ( ( P e. NN /\ A e. ( 1 ... ( P - 1 ) ) ) -> -. P || A ) |
| 11 |
9 10
|
sylan |
|- ( ( P e. Prime /\ A e. ( 1 ... ( P - 1 ) ) ) -> -. P || A ) |
| 12 |
1
|
prmdiv |
|- ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( R e. ( 1 ... ( P - 1 ) ) /\ P || ( ( A x. R ) - 1 ) ) ) |
| 13 |
5 8 11 12
|
syl3anc |
|- ( ( P e. Prime /\ A e. ( 1 ... ( P - 1 ) ) ) -> ( R e. ( 1 ... ( P - 1 ) ) /\ P || ( ( A x. R ) - 1 ) ) ) |
| 14 |
13
|
simprd |
|- ( ( P e. Prime /\ A e. ( 1 ... ( P - 1 ) ) ) -> P || ( ( A x. R ) - 1 ) ) |
| 15 |
7
|
nncnd |
|- ( ( P e. Prime /\ A e. ( 1 ... ( P - 1 ) ) ) -> A e. CC ) |
| 16 |
13
|
simpld |
|- ( ( P e. Prime /\ A e. ( 1 ... ( P - 1 ) ) ) -> R e. ( 1 ... ( P - 1 ) ) ) |
| 17 |
|
elfznn |
|- ( R e. ( 1 ... ( P - 1 ) ) -> R e. NN ) |
| 18 |
16 17
|
syl |
|- ( ( P e. Prime /\ A e. ( 1 ... ( P - 1 ) ) ) -> R e. NN ) |
| 19 |
18
|
nncnd |
|- ( ( P e. Prime /\ A e. ( 1 ... ( P - 1 ) ) ) -> R e. CC ) |
| 20 |
15 19
|
mulcomd |
|- ( ( P e. Prime /\ A e. ( 1 ... ( P - 1 ) ) ) -> ( A x. R ) = ( R x. A ) ) |
| 21 |
20
|
oveq1d |
|- ( ( P e. Prime /\ A e. ( 1 ... ( P - 1 ) ) ) -> ( ( A x. R ) - 1 ) = ( ( R x. A ) - 1 ) ) |
| 22 |
14 21
|
breqtrd |
|- ( ( P e. Prime /\ A e. ( 1 ... ( P - 1 ) ) ) -> P || ( ( R x. A ) - 1 ) ) |
| 23 |
16
|
elfzelzd |
|- ( ( P e. Prime /\ A e. ( 1 ... ( P - 1 ) ) ) -> R e. ZZ ) |
| 24 |
|
fzm1ndvds |
|- ( ( P e. NN /\ R e. ( 1 ... ( P - 1 ) ) ) -> -. P || R ) |
| 25 |
9 16 24
|
syl2an2r |
|- ( ( P e. Prime /\ A e. ( 1 ... ( P - 1 ) ) ) -> -. P || R ) |
| 26 |
|
eqid |
|- ( ( R ^ ( P - 2 ) ) mod P ) = ( ( R ^ ( P - 2 ) ) mod P ) |
| 27 |
26
|
prmdiveq |
|- ( ( P e. Prime /\ R e. ZZ /\ -. P || R ) -> ( ( A e. ( 0 ... ( P - 1 ) ) /\ P || ( ( R x. A ) - 1 ) ) <-> A = ( ( R ^ ( P - 2 ) ) mod P ) ) ) |
| 28 |
5 23 25 27
|
syl3anc |
|- ( ( P e. Prime /\ A e. ( 1 ... ( P - 1 ) ) ) -> ( ( A e. ( 0 ... ( P - 1 ) ) /\ P || ( ( R x. A ) - 1 ) ) <-> A = ( ( R ^ ( P - 2 ) ) mod P ) ) ) |
| 29 |
4 22 28
|
mpbi2and |
|- ( ( P e. Prime /\ A e. ( 1 ... ( P - 1 ) ) ) -> A = ( ( R ^ ( P - 2 ) ) mod P ) ) |