| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqid |  |-  ( ( ! ` P ) / ( ( ! ` ( P - N ) ) x. ( ! ` N ) ) ) = ( ( ! ` P ) / ( ( ! ` ( P - N ) ) x. ( ! ` N ) ) ) | 
						
							| 2 |  | simpl |  |-  ( ( P e. Prime /\ N e. ( 1 ... ( P - 1 ) ) ) -> P e. Prime ) | 
						
							| 3 |  | prmnn |  |-  ( P e. Prime -> P e. NN ) | 
						
							| 4 | 3 | nnzd |  |-  ( P e. Prime -> P e. ZZ ) | 
						
							| 5 |  | 1nn0 |  |-  1 e. NN0 | 
						
							| 6 |  | eluzmn |  |-  ( ( P e. ZZ /\ 1 e. NN0 ) -> P e. ( ZZ>= ` ( P - 1 ) ) ) | 
						
							| 7 | 4 5 6 | sylancl |  |-  ( P e. Prime -> P e. ( ZZ>= ` ( P - 1 ) ) ) | 
						
							| 8 |  | fzss2 |  |-  ( P e. ( ZZ>= ` ( P - 1 ) ) -> ( 1 ... ( P - 1 ) ) C_ ( 1 ... P ) ) | 
						
							| 9 | 7 8 | syl |  |-  ( P e. Prime -> ( 1 ... ( P - 1 ) ) C_ ( 1 ... P ) ) | 
						
							| 10 |  | fz1ssfz0 |  |-  ( 1 ... P ) C_ ( 0 ... P ) | 
						
							| 11 | 9 10 | sstrdi |  |-  ( P e. Prime -> ( 1 ... ( P - 1 ) ) C_ ( 0 ... P ) ) | 
						
							| 12 | 11 | sselda |  |-  ( ( P e. Prime /\ N e. ( 1 ... ( P - 1 ) ) ) -> N e. ( 0 ... P ) ) | 
						
							| 13 |  | bcval2 |  |-  ( N e. ( 0 ... P ) -> ( P _C N ) = ( ( ! ` P ) / ( ( ! ` ( P - N ) ) x. ( ! ` N ) ) ) ) | 
						
							| 14 | 12 13 | syl |  |-  ( ( P e. Prime /\ N e. ( 1 ... ( P - 1 ) ) ) -> ( P _C N ) = ( ( ! ` P ) / ( ( ! ` ( P - N ) ) x. ( ! ` N ) ) ) ) | 
						
							| 15 | 3 | nnnn0d |  |-  ( P e. Prime -> P e. NN0 ) | 
						
							| 16 | 15 | adantr |  |-  ( ( P e. Prime /\ N e. ( 1 ... ( P - 1 ) ) ) -> P e. NN0 ) | 
						
							| 17 |  | elfzelz |  |-  ( N e. ( 1 ... ( P - 1 ) ) -> N e. ZZ ) | 
						
							| 18 | 17 | adantl |  |-  ( ( P e. Prime /\ N e. ( 1 ... ( P - 1 ) ) ) -> N e. ZZ ) | 
						
							| 19 |  | bccl |  |-  ( ( P e. NN0 /\ N e. ZZ ) -> ( P _C N ) e. NN0 ) | 
						
							| 20 | 16 18 19 | syl2anc |  |-  ( ( P e. Prime /\ N e. ( 1 ... ( P - 1 ) ) ) -> ( P _C N ) e. NN0 ) | 
						
							| 21 | 20 | nn0zd |  |-  ( ( P e. Prime /\ N e. ( 1 ... ( P - 1 ) ) ) -> ( P _C N ) e. ZZ ) | 
						
							| 22 | 14 21 | eqeltrrd |  |-  ( ( P e. Prime /\ N e. ( 1 ... ( P - 1 ) ) ) -> ( ( ! ` P ) / ( ( ! ` ( P - N ) ) x. ( ! ` N ) ) ) e. ZZ ) | 
						
							| 23 |  | elfznn |  |-  ( N e. ( 1 ... ( P - 1 ) ) -> N e. NN ) | 
						
							| 24 | 23 | adantl |  |-  ( ( P e. Prime /\ N e. ( 1 ... ( P - 1 ) ) ) -> N e. NN ) | 
						
							| 25 | 24 | nnnn0d |  |-  ( ( P e. Prime /\ N e. ( 1 ... ( P - 1 ) ) ) -> N e. NN0 ) | 
						
							| 26 |  | 1zzd |  |-  ( ( P e. Prime /\ N e. ( 1 ... ( P - 1 ) ) ) -> 1 e. ZZ ) | 
						
							| 27 | 4 | adantr |  |-  ( ( P e. Prime /\ N e. ( 1 ... ( P - 1 ) ) ) -> P e. ZZ ) | 
						
							| 28 |  | simpr |  |-  ( ( P e. Prime /\ N e. ( 1 ... ( P - 1 ) ) ) -> N e. ( 1 ... ( P - 1 ) ) ) | 
						
							| 29 |  | elfzm11 |  |-  ( ( 1 e. ZZ /\ P e. ZZ ) -> ( N e. ( 1 ... ( P - 1 ) ) <-> ( N e. ZZ /\ 1 <_ N /\ N < P ) ) ) | 
						
							| 30 | 29 | biimpa |  |-  ( ( ( 1 e. ZZ /\ P e. ZZ ) /\ N e. ( 1 ... ( P - 1 ) ) ) -> ( N e. ZZ /\ 1 <_ N /\ N < P ) ) | 
						
							| 31 | 30 | simp3d |  |-  ( ( ( 1 e. ZZ /\ P e. ZZ ) /\ N e. ( 1 ... ( P - 1 ) ) ) -> N < P ) | 
						
							| 32 | 26 27 28 31 | syl21anc |  |-  ( ( P e. Prime /\ N e. ( 1 ... ( P - 1 ) ) ) -> N < P ) | 
						
							| 33 |  | ltsubnn0 |  |-  ( ( P e. NN0 /\ N e. NN0 ) -> ( N < P -> ( P - N ) e. NN0 ) ) | 
						
							| 34 | 33 | imp |  |-  ( ( ( P e. NN0 /\ N e. NN0 ) /\ N < P ) -> ( P - N ) e. NN0 ) | 
						
							| 35 | 16 25 32 34 | syl21anc |  |-  ( ( P e. Prime /\ N e. ( 1 ... ( P - 1 ) ) ) -> ( P - N ) e. NN0 ) | 
						
							| 36 | 35 | faccld |  |-  ( ( P e. Prime /\ N e. ( 1 ... ( P - 1 ) ) ) -> ( ! ` ( P - N ) ) e. NN ) | 
						
							| 37 | 36 | nnzd |  |-  ( ( P e. Prime /\ N e. ( 1 ... ( P - 1 ) ) ) -> ( ! ` ( P - N ) ) e. ZZ ) | 
						
							| 38 | 25 | faccld |  |-  ( ( P e. Prime /\ N e. ( 1 ... ( P - 1 ) ) ) -> ( ! ` N ) e. NN ) | 
						
							| 39 | 38 | nnzd |  |-  ( ( P e. Prime /\ N e. ( 1 ... ( P - 1 ) ) ) -> ( ! ` N ) e. ZZ ) | 
						
							| 40 | 37 39 | zmulcld |  |-  ( ( P e. Prime /\ N e. ( 1 ... ( P - 1 ) ) ) -> ( ( ! ` ( P - N ) ) x. ( ! ` N ) ) e. ZZ ) | 
						
							| 41 | 37 | zcnd |  |-  ( ( P e. Prime /\ N e. ( 1 ... ( P - 1 ) ) ) -> ( ! ` ( P - N ) ) e. CC ) | 
						
							| 42 | 39 | zcnd |  |-  ( ( P e. Prime /\ N e. ( 1 ... ( P - 1 ) ) ) -> ( ! ` N ) e. CC ) | 
						
							| 43 |  | facne0 |  |-  ( ( P - N ) e. NN0 -> ( ! ` ( P - N ) ) =/= 0 ) | 
						
							| 44 | 35 43 | syl |  |-  ( ( P e. Prime /\ N e. ( 1 ... ( P - 1 ) ) ) -> ( ! ` ( P - N ) ) =/= 0 ) | 
						
							| 45 |  | facne0 |  |-  ( N e. NN0 -> ( ! ` N ) =/= 0 ) | 
						
							| 46 | 25 45 | syl |  |-  ( ( P e. Prime /\ N e. ( 1 ... ( P - 1 ) ) ) -> ( ! ` N ) =/= 0 ) | 
						
							| 47 | 41 42 44 46 | mulne0d |  |-  ( ( P e. Prime /\ N e. ( 1 ... ( P - 1 ) ) ) -> ( ( ! ` ( P - N ) ) x. ( ! ` N ) ) =/= 0 ) | 
						
							| 48 |  | uzid |  |-  ( P e. ZZ -> P e. ( ZZ>= ` P ) ) | 
						
							| 49 | 4 48 | syl |  |-  ( P e. Prime -> P e. ( ZZ>= ` P ) ) | 
						
							| 50 |  | dvdsfac |  |-  ( ( P e. NN /\ P e. ( ZZ>= ` P ) ) -> P || ( ! ` P ) ) | 
						
							| 51 | 3 49 50 | syl2anc |  |-  ( P e. Prime -> P || ( ! ` P ) ) | 
						
							| 52 | 51 | adantr |  |-  ( ( P e. Prime /\ N e. ( 1 ... ( P - 1 ) ) ) -> P || ( ! ` P ) ) | 
						
							| 53 | 16 | nn0red |  |-  ( ( P e. Prime /\ N e. ( 1 ... ( P - 1 ) ) ) -> P e. RR ) | 
						
							| 54 | 24 | nnrpd |  |-  ( ( P e. Prime /\ N e. ( 1 ... ( P - 1 ) ) ) -> N e. RR+ ) | 
						
							| 55 | 53 54 | ltsubrpd |  |-  ( ( P e. Prime /\ N e. ( 1 ... ( P - 1 ) ) ) -> ( P - N ) < P ) | 
						
							| 56 |  | prmndvdsfaclt |  |-  ( ( P e. Prime /\ ( P - N ) e. NN0 ) -> ( ( P - N ) < P -> -. P || ( ! ` ( P - N ) ) ) ) | 
						
							| 57 | 56 | imp |  |-  ( ( ( P e. Prime /\ ( P - N ) e. NN0 ) /\ ( P - N ) < P ) -> -. P || ( ! ` ( P - N ) ) ) | 
						
							| 58 | 2 35 55 57 | syl21anc |  |-  ( ( P e. Prime /\ N e. ( 1 ... ( P - 1 ) ) ) -> -. P || ( ! ` ( P - N ) ) ) | 
						
							| 59 |  | prmndvdsfaclt |  |-  ( ( P e. Prime /\ N e. NN0 ) -> ( N < P -> -. P || ( ! ` N ) ) ) | 
						
							| 60 | 59 | imp |  |-  ( ( ( P e. Prime /\ N e. NN0 ) /\ N < P ) -> -. P || ( ! ` N ) ) | 
						
							| 61 | 2 25 32 60 | syl21anc |  |-  ( ( P e. Prime /\ N e. ( 1 ... ( P - 1 ) ) ) -> -. P || ( ! ` N ) ) | 
						
							| 62 |  | ioran |  |-  ( -. ( P || ( ! ` ( P - N ) ) \/ P || ( ! ` N ) ) <-> ( -. P || ( ! ` ( P - N ) ) /\ -. P || ( ! ` N ) ) ) | 
						
							| 63 |  | euclemma |  |-  ( ( P e. Prime /\ ( ! ` ( P - N ) ) e. ZZ /\ ( ! ` N ) e. ZZ ) -> ( P || ( ( ! ` ( P - N ) ) x. ( ! ` N ) ) <-> ( P || ( ! ` ( P - N ) ) \/ P || ( ! ` N ) ) ) ) | 
						
							| 64 | 63 | biimpd |  |-  ( ( P e. Prime /\ ( ! ` ( P - N ) ) e. ZZ /\ ( ! ` N ) e. ZZ ) -> ( P || ( ( ! ` ( P - N ) ) x. ( ! ` N ) ) -> ( P || ( ! ` ( P - N ) ) \/ P || ( ! ` N ) ) ) ) | 
						
							| 65 | 64 | con3d |  |-  ( ( P e. Prime /\ ( ! ` ( P - N ) ) e. ZZ /\ ( ! ` N ) e. ZZ ) -> ( -. ( P || ( ! ` ( P - N ) ) \/ P || ( ! ` N ) ) -> -. P || ( ( ! ` ( P - N ) ) x. ( ! ` N ) ) ) ) | 
						
							| 66 | 62 65 | biimtrrid |  |-  ( ( P e. Prime /\ ( ! ` ( P - N ) ) e. ZZ /\ ( ! ` N ) e. ZZ ) -> ( ( -. P || ( ! ` ( P - N ) ) /\ -. P || ( ! ` N ) ) -> -. P || ( ( ! ` ( P - N ) ) x. ( ! ` N ) ) ) ) | 
						
							| 67 | 66 | imp |  |-  ( ( ( P e. Prime /\ ( ! ` ( P - N ) ) e. ZZ /\ ( ! ` N ) e. ZZ ) /\ ( -. P || ( ! ` ( P - N ) ) /\ -. P || ( ! ` N ) ) ) -> -. P || ( ( ! ` ( P - N ) ) x. ( ! ` N ) ) ) | 
						
							| 68 | 2 37 39 58 61 67 | syl32anc |  |-  ( ( P e. Prime /\ N e. ( 1 ... ( P - 1 ) ) ) -> -. P || ( ( ! ` ( P - N ) ) x. ( ! ` N ) ) ) | 
						
							| 69 | 1 2 22 40 47 52 68 | dvdszzq |  |-  ( ( P e. Prime /\ N e. ( 1 ... ( P - 1 ) ) ) -> P || ( ( ! ` P ) / ( ( ! ` ( P - N ) ) x. ( ! ` N ) ) ) ) | 
						
							| 70 | 69 14 | breqtrrd |  |-  ( ( P e. Prime /\ N e. ( 1 ... ( P - 1 ) ) ) -> P || ( P _C N ) ) |