| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq2 |
|- ( m = 1 -> ( A ^ m ) = ( A ^ 1 ) ) |
| 2 |
1
|
breq2d |
|- ( m = 1 -> ( P || ( A ^ m ) <-> P || ( A ^ 1 ) ) ) |
| 3 |
2
|
bibi1d |
|- ( m = 1 -> ( ( P || ( A ^ m ) <-> P || A ) <-> ( P || ( A ^ 1 ) <-> P || A ) ) ) |
| 4 |
3
|
imbi2d |
|- ( m = 1 -> ( ( ( P e. Prime /\ A e. ZZ ) -> ( P || ( A ^ m ) <-> P || A ) ) <-> ( ( P e. Prime /\ A e. ZZ ) -> ( P || ( A ^ 1 ) <-> P || A ) ) ) ) |
| 5 |
|
oveq2 |
|- ( m = k -> ( A ^ m ) = ( A ^ k ) ) |
| 6 |
5
|
breq2d |
|- ( m = k -> ( P || ( A ^ m ) <-> P || ( A ^ k ) ) ) |
| 7 |
6
|
bibi1d |
|- ( m = k -> ( ( P || ( A ^ m ) <-> P || A ) <-> ( P || ( A ^ k ) <-> P || A ) ) ) |
| 8 |
7
|
imbi2d |
|- ( m = k -> ( ( ( P e. Prime /\ A e. ZZ ) -> ( P || ( A ^ m ) <-> P || A ) ) <-> ( ( P e. Prime /\ A e. ZZ ) -> ( P || ( A ^ k ) <-> P || A ) ) ) ) |
| 9 |
|
oveq2 |
|- ( m = ( k + 1 ) -> ( A ^ m ) = ( A ^ ( k + 1 ) ) ) |
| 10 |
9
|
breq2d |
|- ( m = ( k + 1 ) -> ( P || ( A ^ m ) <-> P || ( A ^ ( k + 1 ) ) ) ) |
| 11 |
10
|
bibi1d |
|- ( m = ( k + 1 ) -> ( ( P || ( A ^ m ) <-> P || A ) <-> ( P || ( A ^ ( k + 1 ) ) <-> P || A ) ) ) |
| 12 |
11
|
imbi2d |
|- ( m = ( k + 1 ) -> ( ( ( P e. Prime /\ A e. ZZ ) -> ( P || ( A ^ m ) <-> P || A ) ) <-> ( ( P e. Prime /\ A e. ZZ ) -> ( P || ( A ^ ( k + 1 ) ) <-> P || A ) ) ) ) |
| 13 |
|
oveq2 |
|- ( m = N -> ( A ^ m ) = ( A ^ N ) ) |
| 14 |
13
|
breq2d |
|- ( m = N -> ( P || ( A ^ m ) <-> P || ( A ^ N ) ) ) |
| 15 |
14
|
bibi1d |
|- ( m = N -> ( ( P || ( A ^ m ) <-> P || A ) <-> ( P || ( A ^ N ) <-> P || A ) ) ) |
| 16 |
15
|
imbi2d |
|- ( m = N -> ( ( ( P e. Prime /\ A e. ZZ ) -> ( P || ( A ^ m ) <-> P || A ) ) <-> ( ( P e. Prime /\ A e. ZZ ) -> ( P || ( A ^ N ) <-> P || A ) ) ) ) |
| 17 |
|
zcn |
|- ( A e. ZZ -> A e. CC ) |
| 18 |
17
|
adantl |
|- ( ( P e. Prime /\ A e. ZZ ) -> A e. CC ) |
| 19 |
18
|
exp1d |
|- ( ( P e. Prime /\ A e. ZZ ) -> ( A ^ 1 ) = A ) |
| 20 |
19
|
breq2d |
|- ( ( P e. Prime /\ A e. ZZ ) -> ( P || ( A ^ 1 ) <-> P || A ) ) |
| 21 |
|
nnnn0 |
|- ( k e. NN -> k e. NN0 ) |
| 22 |
|
expp1 |
|- ( ( A e. CC /\ k e. NN0 ) -> ( A ^ ( k + 1 ) ) = ( ( A ^ k ) x. A ) ) |
| 23 |
18 21 22
|
syl2an |
|- ( ( ( P e. Prime /\ A e. ZZ ) /\ k e. NN ) -> ( A ^ ( k + 1 ) ) = ( ( A ^ k ) x. A ) ) |
| 24 |
23
|
breq2d |
|- ( ( ( P e. Prime /\ A e. ZZ ) /\ k e. NN ) -> ( P || ( A ^ ( k + 1 ) ) <-> P || ( ( A ^ k ) x. A ) ) ) |
| 25 |
|
simpll |
|- ( ( ( P e. Prime /\ A e. ZZ ) /\ k e. NN ) -> P e. Prime ) |
| 26 |
|
simpr |
|- ( ( P e. Prime /\ A e. ZZ ) -> A e. ZZ ) |
| 27 |
|
zexpcl |
|- ( ( A e. ZZ /\ k e. NN0 ) -> ( A ^ k ) e. ZZ ) |
| 28 |
26 21 27
|
syl2an |
|- ( ( ( P e. Prime /\ A e. ZZ ) /\ k e. NN ) -> ( A ^ k ) e. ZZ ) |
| 29 |
|
simplr |
|- ( ( ( P e. Prime /\ A e. ZZ ) /\ k e. NN ) -> A e. ZZ ) |
| 30 |
|
euclemma |
|- ( ( P e. Prime /\ ( A ^ k ) e. ZZ /\ A e. ZZ ) -> ( P || ( ( A ^ k ) x. A ) <-> ( P || ( A ^ k ) \/ P || A ) ) ) |
| 31 |
25 28 29 30
|
syl3anc |
|- ( ( ( P e. Prime /\ A e. ZZ ) /\ k e. NN ) -> ( P || ( ( A ^ k ) x. A ) <-> ( P || ( A ^ k ) \/ P || A ) ) ) |
| 32 |
24 31
|
bitrd |
|- ( ( ( P e. Prime /\ A e. ZZ ) /\ k e. NN ) -> ( P || ( A ^ ( k + 1 ) ) <-> ( P || ( A ^ k ) \/ P || A ) ) ) |
| 33 |
|
orbi1 |
|- ( ( P || ( A ^ k ) <-> P || A ) -> ( ( P || ( A ^ k ) \/ P || A ) <-> ( P || A \/ P || A ) ) ) |
| 34 |
|
oridm |
|- ( ( P || A \/ P || A ) <-> P || A ) |
| 35 |
33 34
|
bitrdi |
|- ( ( P || ( A ^ k ) <-> P || A ) -> ( ( P || ( A ^ k ) \/ P || A ) <-> P || A ) ) |
| 36 |
35
|
bibi2d |
|- ( ( P || ( A ^ k ) <-> P || A ) -> ( ( P || ( A ^ ( k + 1 ) ) <-> ( P || ( A ^ k ) \/ P || A ) ) <-> ( P || ( A ^ ( k + 1 ) ) <-> P || A ) ) ) |
| 37 |
32 36
|
syl5ibcom |
|- ( ( ( P e. Prime /\ A e. ZZ ) /\ k e. NN ) -> ( ( P || ( A ^ k ) <-> P || A ) -> ( P || ( A ^ ( k + 1 ) ) <-> P || A ) ) ) |
| 38 |
37
|
expcom |
|- ( k e. NN -> ( ( P e. Prime /\ A e. ZZ ) -> ( ( P || ( A ^ k ) <-> P || A ) -> ( P || ( A ^ ( k + 1 ) ) <-> P || A ) ) ) ) |
| 39 |
38
|
a2d |
|- ( k e. NN -> ( ( ( P e. Prime /\ A e. ZZ ) -> ( P || ( A ^ k ) <-> P || A ) ) -> ( ( P e. Prime /\ A e. ZZ ) -> ( P || ( A ^ ( k + 1 ) ) <-> P || A ) ) ) ) |
| 40 |
4 8 12 16 20 39
|
nnind |
|- ( N e. NN -> ( ( P e. Prime /\ A e. ZZ ) -> ( P || ( A ^ N ) <-> P || A ) ) ) |
| 41 |
40
|
impcom |
|- ( ( ( P e. Prime /\ A e. ZZ ) /\ N e. NN ) -> ( P || ( A ^ N ) <-> P || A ) ) |
| 42 |
41
|
3impa |
|- ( ( P e. Prime /\ A e. ZZ /\ N e. NN ) -> ( P || ( A ^ N ) <-> P || A ) ) |