Step |
Hyp |
Ref |
Expression |
1 |
|
oveq2 |
|- ( m = 1 -> ( A ^ m ) = ( A ^ 1 ) ) |
2 |
1
|
breq2d |
|- ( m = 1 -> ( P || ( A ^ m ) <-> P || ( A ^ 1 ) ) ) |
3 |
2
|
bibi1d |
|- ( m = 1 -> ( ( P || ( A ^ m ) <-> P || A ) <-> ( P || ( A ^ 1 ) <-> P || A ) ) ) |
4 |
3
|
imbi2d |
|- ( m = 1 -> ( ( ( P e. Prime /\ A e. ZZ ) -> ( P || ( A ^ m ) <-> P || A ) ) <-> ( ( P e. Prime /\ A e. ZZ ) -> ( P || ( A ^ 1 ) <-> P || A ) ) ) ) |
5 |
|
oveq2 |
|- ( m = k -> ( A ^ m ) = ( A ^ k ) ) |
6 |
5
|
breq2d |
|- ( m = k -> ( P || ( A ^ m ) <-> P || ( A ^ k ) ) ) |
7 |
6
|
bibi1d |
|- ( m = k -> ( ( P || ( A ^ m ) <-> P || A ) <-> ( P || ( A ^ k ) <-> P || A ) ) ) |
8 |
7
|
imbi2d |
|- ( m = k -> ( ( ( P e. Prime /\ A e. ZZ ) -> ( P || ( A ^ m ) <-> P || A ) ) <-> ( ( P e. Prime /\ A e. ZZ ) -> ( P || ( A ^ k ) <-> P || A ) ) ) ) |
9 |
|
oveq2 |
|- ( m = ( k + 1 ) -> ( A ^ m ) = ( A ^ ( k + 1 ) ) ) |
10 |
9
|
breq2d |
|- ( m = ( k + 1 ) -> ( P || ( A ^ m ) <-> P || ( A ^ ( k + 1 ) ) ) ) |
11 |
10
|
bibi1d |
|- ( m = ( k + 1 ) -> ( ( P || ( A ^ m ) <-> P || A ) <-> ( P || ( A ^ ( k + 1 ) ) <-> P || A ) ) ) |
12 |
11
|
imbi2d |
|- ( m = ( k + 1 ) -> ( ( ( P e. Prime /\ A e. ZZ ) -> ( P || ( A ^ m ) <-> P || A ) ) <-> ( ( P e. Prime /\ A e. ZZ ) -> ( P || ( A ^ ( k + 1 ) ) <-> P || A ) ) ) ) |
13 |
|
oveq2 |
|- ( m = N -> ( A ^ m ) = ( A ^ N ) ) |
14 |
13
|
breq2d |
|- ( m = N -> ( P || ( A ^ m ) <-> P || ( A ^ N ) ) ) |
15 |
14
|
bibi1d |
|- ( m = N -> ( ( P || ( A ^ m ) <-> P || A ) <-> ( P || ( A ^ N ) <-> P || A ) ) ) |
16 |
15
|
imbi2d |
|- ( m = N -> ( ( ( P e. Prime /\ A e. ZZ ) -> ( P || ( A ^ m ) <-> P || A ) ) <-> ( ( P e. Prime /\ A e. ZZ ) -> ( P || ( A ^ N ) <-> P || A ) ) ) ) |
17 |
|
zcn |
|- ( A e. ZZ -> A e. CC ) |
18 |
17
|
adantl |
|- ( ( P e. Prime /\ A e. ZZ ) -> A e. CC ) |
19 |
18
|
exp1d |
|- ( ( P e. Prime /\ A e. ZZ ) -> ( A ^ 1 ) = A ) |
20 |
19
|
breq2d |
|- ( ( P e. Prime /\ A e. ZZ ) -> ( P || ( A ^ 1 ) <-> P || A ) ) |
21 |
|
nnnn0 |
|- ( k e. NN -> k e. NN0 ) |
22 |
|
expp1 |
|- ( ( A e. CC /\ k e. NN0 ) -> ( A ^ ( k + 1 ) ) = ( ( A ^ k ) x. A ) ) |
23 |
18 21 22
|
syl2an |
|- ( ( ( P e. Prime /\ A e. ZZ ) /\ k e. NN ) -> ( A ^ ( k + 1 ) ) = ( ( A ^ k ) x. A ) ) |
24 |
23
|
breq2d |
|- ( ( ( P e. Prime /\ A e. ZZ ) /\ k e. NN ) -> ( P || ( A ^ ( k + 1 ) ) <-> P || ( ( A ^ k ) x. A ) ) ) |
25 |
|
simpll |
|- ( ( ( P e. Prime /\ A e. ZZ ) /\ k e. NN ) -> P e. Prime ) |
26 |
|
simpr |
|- ( ( P e. Prime /\ A e. ZZ ) -> A e. ZZ ) |
27 |
|
zexpcl |
|- ( ( A e. ZZ /\ k e. NN0 ) -> ( A ^ k ) e. ZZ ) |
28 |
26 21 27
|
syl2an |
|- ( ( ( P e. Prime /\ A e. ZZ ) /\ k e. NN ) -> ( A ^ k ) e. ZZ ) |
29 |
|
simplr |
|- ( ( ( P e. Prime /\ A e. ZZ ) /\ k e. NN ) -> A e. ZZ ) |
30 |
|
euclemma |
|- ( ( P e. Prime /\ ( A ^ k ) e. ZZ /\ A e. ZZ ) -> ( P || ( ( A ^ k ) x. A ) <-> ( P || ( A ^ k ) \/ P || A ) ) ) |
31 |
25 28 29 30
|
syl3anc |
|- ( ( ( P e. Prime /\ A e. ZZ ) /\ k e. NN ) -> ( P || ( ( A ^ k ) x. A ) <-> ( P || ( A ^ k ) \/ P || A ) ) ) |
32 |
24 31
|
bitrd |
|- ( ( ( P e. Prime /\ A e. ZZ ) /\ k e. NN ) -> ( P || ( A ^ ( k + 1 ) ) <-> ( P || ( A ^ k ) \/ P || A ) ) ) |
33 |
|
orbi1 |
|- ( ( P || ( A ^ k ) <-> P || A ) -> ( ( P || ( A ^ k ) \/ P || A ) <-> ( P || A \/ P || A ) ) ) |
34 |
|
oridm |
|- ( ( P || A \/ P || A ) <-> P || A ) |
35 |
33 34
|
bitrdi |
|- ( ( P || ( A ^ k ) <-> P || A ) -> ( ( P || ( A ^ k ) \/ P || A ) <-> P || A ) ) |
36 |
35
|
bibi2d |
|- ( ( P || ( A ^ k ) <-> P || A ) -> ( ( P || ( A ^ ( k + 1 ) ) <-> ( P || ( A ^ k ) \/ P || A ) ) <-> ( P || ( A ^ ( k + 1 ) ) <-> P || A ) ) ) |
37 |
32 36
|
syl5ibcom |
|- ( ( ( P e. Prime /\ A e. ZZ ) /\ k e. NN ) -> ( ( P || ( A ^ k ) <-> P || A ) -> ( P || ( A ^ ( k + 1 ) ) <-> P || A ) ) ) |
38 |
37
|
expcom |
|- ( k e. NN -> ( ( P e. Prime /\ A e. ZZ ) -> ( ( P || ( A ^ k ) <-> P || A ) -> ( P || ( A ^ ( k + 1 ) ) <-> P || A ) ) ) ) |
39 |
38
|
a2d |
|- ( k e. NN -> ( ( ( P e. Prime /\ A e. ZZ ) -> ( P || ( A ^ k ) <-> P || A ) ) -> ( ( P e. Prime /\ A e. ZZ ) -> ( P || ( A ^ ( k + 1 ) ) <-> P || A ) ) ) ) |
40 |
4 8 12 16 20 39
|
nnind |
|- ( N e. NN -> ( ( P e. Prime /\ A e. ZZ ) -> ( P || ( A ^ N ) <-> P || A ) ) ) |
41 |
40
|
impcom |
|- ( ( ( P e. Prime /\ A e. ZZ ) /\ N e. NN ) -> ( P || ( A ^ N ) <-> P || A ) ) |
42 |
41
|
3impa |
|- ( ( P e. Prime /\ A e. ZZ /\ N e. NN ) -> ( P || ( A ^ N ) <-> P || A ) ) |