| Step | Hyp | Ref | Expression | 
						
							| 1 |  | prmz |  |-  ( Q e. Prime -> Q e. ZZ ) | 
						
							| 2 |  | prmdvdsexp |  |-  ( ( P e. Prime /\ Q e. ZZ /\ N e. NN ) -> ( P || ( Q ^ N ) <-> P || Q ) ) | 
						
							| 3 | 1 2 | syl3an2 |  |-  ( ( P e. Prime /\ Q e. Prime /\ N e. NN ) -> ( P || ( Q ^ N ) <-> P || Q ) ) | 
						
							| 4 |  | prmuz2 |  |-  ( P e. Prime -> P e. ( ZZ>= ` 2 ) ) | 
						
							| 5 |  | dvdsprm |  |-  ( ( P e. ( ZZ>= ` 2 ) /\ Q e. Prime ) -> ( P || Q <-> P = Q ) ) | 
						
							| 6 | 4 5 | sylan |  |-  ( ( P e. Prime /\ Q e. Prime ) -> ( P || Q <-> P = Q ) ) | 
						
							| 7 | 6 | 3adant3 |  |-  ( ( P e. Prime /\ Q e. Prime /\ N e. NN ) -> ( P || Q <-> P = Q ) ) | 
						
							| 8 | 3 7 | bitrd |  |-  ( ( P e. Prime /\ Q e. Prime /\ N e. NN ) -> ( P || ( Q ^ N ) <-> P = Q ) ) |