Step |
Hyp |
Ref |
Expression |
1 |
|
elnn0 |
|- ( N e. NN0 <-> ( N e. NN \/ N = 0 ) ) |
2 |
|
prmdvdsexpb |
|- ( ( P e. Prime /\ Q e. Prime /\ N e. NN ) -> ( P || ( Q ^ N ) <-> P = Q ) ) |
3 |
2
|
biimpd |
|- ( ( P e. Prime /\ Q e. Prime /\ N e. NN ) -> ( P || ( Q ^ N ) -> P = Q ) ) |
4 |
3
|
3expia |
|- ( ( P e. Prime /\ Q e. Prime ) -> ( N e. NN -> ( P || ( Q ^ N ) -> P = Q ) ) ) |
5 |
|
prmnn |
|- ( Q e. Prime -> Q e. NN ) |
6 |
5
|
adantl |
|- ( ( P e. Prime /\ Q e. Prime ) -> Q e. NN ) |
7 |
6
|
nncnd |
|- ( ( P e. Prime /\ Q e. Prime ) -> Q e. CC ) |
8 |
7
|
exp0d |
|- ( ( P e. Prime /\ Q e. Prime ) -> ( Q ^ 0 ) = 1 ) |
9 |
8
|
breq2d |
|- ( ( P e. Prime /\ Q e. Prime ) -> ( P || ( Q ^ 0 ) <-> P || 1 ) ) |
10 |
|
nprmdvds1 |
|- ( P e. Prime -> -. P || 1 ) |
11 |
10
|
pm2.21d |
|- ( P e. Prime -> ( P || 1 -> P = Q ) ) |
12 |
11
|
adantr |
|- ( ( P e. Prime /\ Q e. Prime ) -> ( P || 1 -> P = Q ) ) |
13 |
9 12
|
sylbid |
|- ( ( P e. Prime /\ Q e. Prime ) -> ( P || ( Q ^ 0 ) -> P = Q ) ) |
14 |
|
oveq2 |
|- ( N = 0 -> ( Q ^ N ) = ( Q ^ 0 ) ) |
15 |
14
|
breq2d |
|- ( N = 0 -> ( P || ( Q ^ N ) <-> P || ( Q ^ 0 ) ) ) |
16 |
15
|
imbi1d |
|- ( N = 0 -> ( ( P || ( Q ^ N ) -> P = Q ) <-> ( P || ( Q ^ 0 ) -> P = Q ) ) ) |
17 |
13 16
|
syl5ibrcom |
|- ( ( P e. Prime /\ Q e. Prime ) -> ( N = 0 -> ( P || ( Q ^ N ) -> P = Q ) ) ) |
18 |
4 17
|
jaod |
|- ( ( P e. Prime /\ Q e. Prime ) -> ( ( N e. NN \/ N = 0 ) -> ( P || ( Q ^ N ) -> P = Q ) ) ) |
19 |
1 18
|
syl5bi |
|- ( ( P e. Prime /\ Q e. Prime ) -> ( N e. NN0 -> ( P || ( Q ^ N ) -> P = Q ) ) ) |
20 |
19
|
3impia |
|- ( ( P e. Prime /\ Q e. Prime /\ N e. NN0 ) -> ( P || ( Q ^ N ) -> P = Q ) ) |