| Step | Hyp | Ref | Expression | 
						
							| 1 |  | prmdvdsncoprmbd.a |  |-  ( ph -> A e. NN ) | 
						
							| 2 |  | prmdvdsncoprmbd.b |  |-  ( ph -> B e. NN ) | 
						
							| 3 |  | prmuz2 |  |-  ( p e. Prime -> p e. ( ZZ>= ` 2 ) ) | 
						
							| 4 | 3 | a1i |  |-  ( ph -> ( p e. Prime -> p e. ( ZZ>= ` 2 ) ) ) | 
						
							| 5 | 4 | anim1d |  |-  ( ph -> ( ( p e. Prime /\ ( p || A /\ p || B ) ) -> ( p e. ( ZZ>= ` 2 ) /\ ( p || A /\ p || B ) ) ) ) | 
						
							| 6 | 5 | reximdv2 |  |-  ( ph -> ( E. p e. Prime ( p || A /\ p || B ) -> E. p e. ( ZZ>= ` 2 ) ( p || A /\ p || B ) ) ) | 
						
							| 7 |  | breq1 |  |-  ( p = i -> ( p || A <-> i || A ) ) | 
						
							| 8 |  | breq1 |  |-  ( p = i -> ( p || B <-> i || B ) ) | 
						
							| 9 | 7 8 | anbi12d |  |-  ( p = i -> ( ( p || A /\ p || B ) <-> ( i || A /\ i || B ) ) ) | 
						
							| 10 | 9 | cbvrexvw |  |-  ( E. p e. ( ZZ>= ` 2 ) ( p || A /\ p || B ) <-> E. i e. ( ZZ>= ` 2 ) ( i || A /\ i || B ) ) | 
						
							| 11 | 6 10 | imbitrdi |  |-  ( ph -> ( E. p e. Prime ( p || A /\ p || B ) -> E. i e. ( ZZ>= ` 2 ) ( i || A /\ i || B ) ) ) | 
						
							| 12 |  | exprmfct |  |-  ( i e. ( ZZ>= ` 2 ) -> E. p e. Prime p || i ) | 
						
							| 13 | 12 | ad2antrl |  |-  ( ( ph /\ ( i e. ( ZZ>= ` 2 ) /\ ( i || A /\ i || B ) ) ) -> E. p e. Prime p || i ) | 
						
							| 14 |  | prmnn |  |-  ( p e. Prime -> p e. NN ) | 
						
							| 15 | 14 | ad2antlr |  |-  ( ( ( ( ph /\ ( i e. ( ZZ>= ` 2 ) /\ ( i || A /\ i || B ) ) ) /\ p e. Prime ) /\ p || i ) -> p e. NN ) | 
						
							| 16 | 15 | nnzd |  |-  ( ( ( ( ph /\ ( i e. ( ZZ>= ` 2 ) /\ ( i || A /\ i || B ) ) ) /\ p e. Prime ) /\ p || i ) -> p e. ZZ ) | 
						
							| 17 |  | eluzelz |  |-  ( i e. ( ZZ>= ` 2 ) -> i e. ZZ ) | 
						
							| 18 | 17 | ad2antrr |  |-  ( ( ( i e. ( ZZ>= ` 2 ) /\ ( i || A /\ i || B ) ) /\ p || i ) -> i e. ZZ ) | 
						
							| 19 | 18 | ad4ant24 |  |-  ( ( ( ( ph /\ ( i e. ( ZZ>= ` 2 ) /\ ( i || A /\ i || B ) ) ) /\ p e. Prime ) /\ p || i ) -> i e. ZZ ) | 
						
							| 20 | 1 | ad3antrrr |  |-  ( ( ( ( ph /\ ( i e. ( ZZ>= ` 2 ) /\ ( i || A /\ i || B ) ) ) /\ p e. Prime ) /\ p || i ) -> A e. NN ) | 
						
							| 21 | 20 | nnzd |  |-  ( ( ( ( ph /\ ( i e. ( ZZ>= ` 2 ) /\ ( i || A /\ i || B ) ) ) /\ p e. Prime ) /\ p || i ) -> A e. ZZ ) | 
						
							| 22 |  | simpr |  |-  ( ( ( ( ph /\ ( i e. ( ZZ>= ` 2 ) /\ ( i || A /\ i || B ) ) ) /\ p e. Prime ) /\ p || i ) -> p || i ) | 
						
							| 23 |  | simprrl |  |-  ( ( ph /\ ( i e. ( ZZ>= ` 2 ) /\ ( i || A /\ i || B ) ) ) -> i || A ) | 
						
							| 24 | 23 | ad2antrr |  |-  ( ( ( ( ph /\ ( i e. ( ZZ>= ` 2 ) /\ ( i || A /\ i || B ) ) ) /\ p e. Prime ) /\ p || i ) -> i || A ) | 
						
							| 25 | 16 19 21 22 24 | dvdstrd |  |-  ( ( ( ( ph /\ ( i e. ( ZZ>= ` 2 ) /\ ( i || A /\ i || B ) ) ) /\ p e. Prime ) /\ p || i ) -> p || A ) | 
						
							| 26 | 2 | ad3antrrr |  |-  ( ( ( ( ph /\ ( i e. ( ZZ>= ` 2 ) /\ ( i || A /\ i || B ) ) ) /\ p e. Prime ) /\ p || i ) -> B e. NN ) | 
						
							| 27 | 26 | nnzd |  |-  ( ( ( ( ph /\ ( i e. ( ZZ>= ` 2 ) /\ ( i || A /\ i || B ) ) ) /\ p e. Prime ) /\ p || i ) -> B e. ZZ ) | 
						
							| 28 |  | simprrr |  |-  ( ( ph /\ ( i e. ( ZZ>= ` 2 ) /\ ( i || A /\ i || B ) ) ) -> i || B ) | 
						
							| 29 | 28 | ad2antrr |  |-  ( ( ( ( ph /\ ( i e. ( ZZ>= ` 2 ) /\ ( i || A /\ i || B ) ) ) /\ p e. Prime ) /\ p || i ) -> i || B ) | 
						
							| 30 | 16 19 27 22 29 | dvdstrd |  |-  ( ( ( ( ph /\ ( i e. ( ZZ>= ` 2 ) /\ ( i || A /\ i || B ) ) ) /\ p e. Prime ) /\ p || i ) -> p || B ) | 
						
							| 31 | 25 30 | jca |  |-  ( ( ( ( ph /\ ( i e. ( ZZ>= ` 2 ) /\ ( i || A /\ i || B ) ) ) /\ p e. Prime ) /\ p || i ) -> ( p || A /\ p || B ) ) | 
						
							| 32 | 31 | ex |  |-  ( ( ( ph /\ ( i e. ( ZZ>= ` 2 ) /\ ( i || A /\ i || B ) ) ) /\ p e. Prime ) -> ( p || i -> ( p || A /\ p || B ) ) ) | 
						
							| 33 | 32 | reximdva |  |-  ( ( ph /\ ( i e. ( ZZ>= ` 2 ) /\ ( i || A /\ i || B ) ) ) -> ( E. p e. Prime p || i -> E. p e. Prime ( p || A /\ p || B ) ) ) | 
						
							| 34 | 13 33 | mpd |  |-  ( ( ph /\ ( i e. ( ZZ>= ` 2 ) /\ ( i || A /\ i || B ) ) ) -> E. p e. Prime ( p || A /\ p || B ) ) | 
						
							| 35 | 34 | rexlimdvaa |  |-  ( ph -> ( E. i e. ( ZZ>= ` 2 ) ( i || A /\ i || B ) -> E. p e. Prime ( p || A /\ p || B ) ) ) | 
						
							| 36 | 11 35 | impbid |  |-  ( ph -> ( E. p e. Prime ( p || A /\ p || B ) <-> E. i e. ( ZZ>= ` 2 ) ( i || A /\ i || B ) ) ) | 
						
							| 37 |  | ncoprmgcdne1b |  |-  ( ( A e. NN /\ B e. NN ) -> ( E. i e. ( ZZ>= ` 2 ) ( i || A /\ i || B ) <-> ( A gcd B ) =/= 1 ) ) | 
						
							| 38 | 1 2 37 | syl2anc |  |-  ( ph -> ( E. i e. ( ZZ>= ` 2 ) ( i || A /\ i || B ) <-> ( A gcd B ) =/= 1 ) ) | 
						
							| 39 | 36 38 | bitrd |  |-  ( ph -> ( E. p e. Prime ( p || A /\ p || B ) <-> ( A gcd B ) =/= 1 ) ) |