Step |
Hyp |
Ref |
Expression |
1 |
|
prmdvdsncoprmbd.a |
|- ( ph -> A e. NN ) |
2 |
|
prmdvdsncoprmbd.b |
|- ( ph -> B e. NN ) |
3 |
|
prmuz2 |
|- ( p e. Prime -> p e. ( ZZ>= ` 2 ) ) |
4 |
3
|
a1i |
|- ( ph -> ( p e. Prime -> p e. ( ZZ>= ` 2 ) ) ) |
5 |
4
|
anim1d |
|- ( ph -> ( ( p e. Prime /\ ( p || A /\ p || B ) ) -> ( p e. ( ZZ>= ` 2 ) /\ ( p || A /\ p || B ) ) ) ) |
6 |
5
|
reximdv2 |
|- ( ph -> ( E. p e. Prime ( p || A /\ p || B ) -> E. p e. ( ZZ>= ` 2 ) ( p || A /\ p || B ) ) ) |
7 |
|
breq1 |
|- ( p = i -> ( p || A <-> i || A ) ) |
8 |
|
breq1 |
|- ( p = i -> ( p || B <-> i || B ) ) |
9 |
7 8
|
anbi12d |
|- ( p = i -> ( ( p || A /\ p || B ) <-> ( i || A /\ i || B ) ) ) |
10 |
9
|
cbvrexvw |
|- ( E. p e. ( ZZ>= ` 2 ) ( p || A /\ p || B ) <-> E. i e. ( ZZ>= ` 2 ) ( i || A /\ i || B ) ) |
11 |
6 10
|
syl6ib |
|- ( ph -> ( E. p e. Prime ( p || A /\ p || B ) -> E. i e. ( ZZ>= ` 2 ) ( i || A /\ i || B ) ) ) |
12 |
|
exprmfct |
|- ( i e. ( ZZ>= ` 2 ) -> E. p e. Prime p || i ) |
13 |
12
|
ad2antrl |
|- ( ( ph /\ ( i e. ( ZZ>= ` 2 ) /\ ( i || A /\ i || B ) ) ) -> E. p e. Prime p || i ) |
14 |
|
prmnn |
|- ( p e. Prime -> p e. NN ) |
15 |
14
|
ad2antlr |
|- ( ( ( ( ph /\ ( i e. ( ZZ>= ` 2 ) /\ ( i || A /\ i || B ) ) ) /\ p e. Prime ) /\ p || i ) -> p e. NN ) |
16 |
15
|
nnzd |
|- ( ( ( ( ph /\ ( i e. ( ZZ>= ` 2 ) /\ ( i || A /\ i || B ) ) ) /\ p e. Prime ) /\ p || i ) -> p e. ZZ ) |
17 |
|
eluzelz |
|- ( i e. ( ZZ>= ` 2 ) -> i e. ZZ ) |
18 |
17
|
ad2antrr |
|- ( ( ( i e. ( ZZ>= ` 2 ) /\ ( i || A /\ i || B ) ) /\ p || i ) -> i e. ZZ ) |
19 |
18
|
ad4ant24 |
|- ( ( ( ( ph /\ ( i e. ( ZZ>= ` 2 ) /\ ( i || A /\ i || B ) ) ) /\ p e. Prime ) /\ p || i ) -> i e. ZZ ) |
20 |
1
|
ad3antrrr |
|- ( ( ( ( ph /\ ( i e. ( ZZ>= ` 2 ) /\ ( i || A /\ i || B ) ) ) /\ p e. Prime ) /\ p || i ) -> A e. NN ) |
21 |
20
|
nnzd |
|- ( ( ( ( ph /\ ( i e. ( ZZ>= ` 2 ) /\ ( i || A /\ i || B ) ) ) /\ p e. Prime ) /\ p || i ) -> A e. ZZ ) |
22 |
|
simpr |
|- ( ( ( ( ph /\ ( i e. ( ZZ>= ` 2 ) /\ ( i || A /\ i || B ) ) ) /\ p e. Prime ) /\ p || i ) -> p || i ) |
23 |
|
simprrl |
|- ( ( ph /\ ( i e. ( ZZ>= ` 2 ) /\ ( i || A /\ i || B ) ) ) -> i || A ) |
24 |
23
|
ad2antrr |
|- ( ( ( ( ph /\ ( i e. ( ZZ>= ` 2 ) /\ ( i || A /\ i || B ) ) ) /\ p e. Prime ) /\ p || i ) -> i || A ) |
25 |
16 19 21 22 24
|
dvdstrd |
|- ( ( ( ( ph /\ ( i e. ( ZZ>= ` 2 ) /\ ( i || A /\ i || B ) ) ) /\ p e. Prime ) /\ p || i ) -> p || A ) |
26 |
2
|
ad3antrrr |
|- ( ( ( ( ph /\ ( i e. ( ZZ>= ` 2 ) /\ ( i || A /\ i || B ) ) ) /\ p e. Prime ) /\ p || i ) -> B e. NN ) |
27 |
26
|
nnzd |
|- ( ( ( ( ph /\ ( i e. ( ZZ>= ` 2 ) /\ ( i || A /\ i || B ) ) ) /\ p e. Prime ) /\ p || i ) -> B e. ZZ ) |
28 |
|
simprrr |
|- ( ( ph /\ ( i e. ( ZZ>= ` 2 ) /\ ( i || A /\ i || B ) ) ) -> i || B ) |
29 |
28
|
ad2antrr |
|- ( ( ( ( ph /\ ( i e. ( ZZ>= ` 2 ) /\ ( i || A /\ i || B ) ) ) /\ p e. Prime ) /\ p || i ) -> i || B ) |
30 |
16 19 27 22 29
|
dvdstrd |
|- ( ( ( ( ph /\ ( i e. ( ZZ>= ` 2 ) /\ ( i || A /\ i || B ) ) ) /\ p e. Prime ) /\ p || i ) -> p || B ) |
31 |
25 30
|
jca |
|- ( ( ( ( ph /\ ( i e. ( ZZ>= ` 2 ) /\ ( i || A /\ i || B ) ) ) /\ p e. Prime ) /\ p || i ) -> ( p || A /\ p || B ) ) |
32 |
31
|
ex |
|- ( ( ( ph /\ ( i e. ( ZZ>= ` 2 ) /\ ( i || A /\ i || B ) ) ) /\ p e. Prime ) -> ( p || i -> ( p || A /\ p || B ) ) ) |
33 |
32
|
reximdva |
|- ( ( ph /\ ( i e. ( ZZ>= ` 2 ) /\ ( i || A /\ i || B ) ) ) -> ( E. p e. Prime p || i -> E. p e. Prime ( p || A /\ p || B ) ) ) |
34 |
13 33
|
mpd |
|- ( ( ph /\ ( i e. ( ZZ>= ` 2 ) /\ ( i || A /\ i || B ) ) ) -> E. p e. Prime ( p || A /\ p || B ) ) |
35 |
34
|
rexlimdvaa |
|- ( ph -> ( E. i e. ( ZZ>= ` 2 ) ( i || A /\ i || B ) -> E. p e. Prime ( p || A /\ p || B ) ) ) |
36 |
11 35
|
impbid |
|- ( ph -> ( E. p e. Prime ( p || A /\ p || B ) <-> E. i e. ( ZZ>= ` 2 ) ( i || A /\ i || B ) ) ) |
37 |
|
ncoprmgcdne1b |
|- ( ( A e. NN /\ B e. NN ) -> ( E. i e. ( ZZ>= ` 2 ) ( i || A /\ i || B ) <-> ( A gcd B ) =/= 1 ) ) |
38 |
1 2 37
|
syl2anc |
|- ( ph -> ( E. i e. ( ZZ>= ` 2 ) ( i || A /\ i || B ) <-> ( A gcd B ) =/= 1 ) ) |
39 |
36 38
|
bitrd |
|- ( ph -> ( E. p e. Prime ( p || A /\ p || B ) <-> ( A gcd B ) =/= 1 ) ) |