Step |
Hyp |
Ref |
Expression |
1 |
|
zcn |
|- ( M e. ZZ -> M e. CC ) |
2 |
1
|
sqvald |
|- ( M e. ZZ -> ( M ^ 2 ) = ( M x. M ) ) |
3 |
2
|
breq2d |
|- ( M e. ZZ -> ( P || ( M ^ 2 ) <-> P || ( M x. M ) ) ) |
4 |
3
|
adantl |
|- ( ( P e. Prime /\ M e. ZZ ) -> ( P || ( M ^ 2 ) <-> P || ( M x. M ) ) ) |
5 |
|
euclemma |
|- ( ( P e. Prime /\ M e. ZZ /\ M e. ZZ ) -> ( P || ( M x. M ) <-> ( P || M \/ P || M ) ) ) |
6 |
5
|
3anidm23 |
|- ( ( P e. Prime /\ M e. ZZ ) -> ( P || ( M x. M ) <-> ( P || M \/ P || M ) ) ) |
7 |
|
oridm |
|- ( ( P || M \/ P || M ) <-> P || M ) |
8 |
6 7
|
bitrdi |
|- ( ( P e. Prime /\ M e. ZZ ) -> ( P || ( M x. M ) <-> P || M ) ) |
9 |
4 8
|
bitr2d |
|- ( ( P e. Prime /\ M e. ZZ ) -> ( P || M <-> P || ( M ^ 2 ) ) ) |