Metamath Proof Explorer


Theorem prmdvdssqOLD

Description: Obsolete version of prmdvdssq as of 21-Aug-2024. (Contributed by Scott Fenton, 8-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion prmdvdssqOLD
|- ( ( P e. Prime /\ M e. ZZ ) -> ( P || M <-> P || ( M ^ 2 ) ) )

Proof

Step Hyp Ref Expression
1 zcn
 |-  ( M e. ZZ -> M e. CC )
2 1 sqvald
 |-  ( M e. ZZ -> ( M ^ 2 ) = ( M x. M ) )
3 2 breq2d
 |-  ( M e. ZZ -> ( P || ( M ^ 2 ) <-> P || ( M x. M ) ) )
4 3 adantl
 |-  ( ( P e. Prime /\ M e. ZZ ) -> ( P || ( M ^ 2 ) <-> P || ( M x. M ) ) )
5 euclemma
 |-  ( ( P e. Prime /\ M e. ZZ /\ M e. ZZ ) -> ( P || ( M x. M ) <-> ( P || M \/ P || M ) ) )
6 5 3anidm23
 |-  ( ( P e. Prime /\ M e. ZZ ) -> ( P || ( M x. M ) <-> ( P || M \/ P || M ) ) )
7 oridm
 |-  ( ( P || M \/ P || M ) <-> P || M )
8 6 7 bitrdi
 |-  ( ( P e. Prime /\ M e. ZZ ) -> ( P || ( M x. M ) <-> P || M ) )
9 4 8 bitr2d
 |-  ( ( P e. Prime /\ M e. ZZ ) -> ( P || M <-> P || ( M ^ 2 ) ) )