Step |
Hyp |
Ref |
Expression |
1 |
|
prmz |
|- ( P e. Prime -> P e. ZZ ) |
2 |
1
|
adantr |
|- ( ( P e. Prime /\ Q e. Prime ) -> P e. ZZ ) |
3 |
2
|
3ad2ant1 |
|- ( ( ( P e. Prime /\ Q e. Prime ) /\ ( M e. NN /\ N e. NN ) /\ ( P ^ M ) = ( Q ^ N ) ) -> P e. ZZ ) |
4 |
|
simp2l |
|- ( ( ( P e. Prime /\ Q e. Prime ) /\ ( M e. NN /\ N e. NN ) /\ ( P ^ M ) = ( Q ^ N ) ) -> M e. NN ) |
5 |
|
iddvdsexp |
|- ( ( P e. ZZ /\ M e. NN ) -> P || ( P ^ M ) ) |
6 |
3 4 5
|
syl2anc |
|- ( ( ( P e. Prime /\ Q e. Prime ) /\ ( M e. NN /\ N e. NN ) /\ ( P ^ M ) = ( Q ^ N ) ) -> P || ( P ^ M ) ) |
7 |
|
breq2 |
|- ( ( P ^ M ) = ( Q ^ N ) -> ( P || ( P ^ M ) <-> P || ( Q ^ N ) ) ) |
8 |
7
|
3ad2ant3 |
|- ( ( ( P e. Prime /\ Q e. Prime ) /\ ( M e. NN /\ N e. NN ) /\ ( P ^ M ) = ( Q ^ N ) ) -> ( P || ( P ^ M ) <-> P || ( Q ^ N ) ) ) |
9 |
|
simp1l |
|- ( ( ( P e. Prime /\ Q e. Prime ) /\ ( M e. NN /\ N e. NN ) /\ ( P ^ M ) = ( Q ^ N ) ) -> P e. Prime ) |
10 |
|
simp1r |
|- ( ( ( P e. Prime /\ Q e. Prime ) /\ ( M e. NN /\ N e. NN ) /\ ( P ^ M ) = ( Q ^ N ) ) -> Q e. Prime ) |
11 |
|
simp2r |
|- ( ( ( P e. Prime /\ Q e. Prime ) /\ ( M e. NN /\ N e. NN ) /\ ( P ^ M ) = ( Q ^ N ) ) -> N e. NN ) |
12 |
|
prmdvdsexpb |
|- ( ( P e. Prime /\ Q e. Prime /\ N e. NN ) -> ( P || ( Q ^ N ) <-> P = Q ) ) |
13 |
9 10 11 12
|
syl3anc |
|- ( ( ( P e. Prime /\ Q e. Prime ) /\ ( M e. NN /\ N e. NN ) /\ ( P ^ M ) = ( Q ^ N ) ) -> ( P || ( Q ^ N ) <-> P = Q ) ) |
14 |
8 13
|
bitrd |
|- ( ( ( P e. Prime /\ Q e. Prime ) /\ ( M e. NN /\ N e. NN ) /\ ( P ^ M ) = ( Q ^ N ) ) -> ( P || ( P ^ M ) <-> P = Q ) ) |
15 |
6 14
|
mpbid |
|- ( ( ( P e. Prime /\ Q e. Prime ) /\ ( M e. NN /\ N e. NN ) /\ ( P ^ M ) = ( Q ^ N ) ) -> P = Q ) |
16 |
3
|
zred |
|- ( ( ( P e. Prime /\ Q e. Prime ) /\ ( M e. NN /\ N e. NN ) /\ ( P ^ M ) = ( Q ^ N ) ) -> P e. RR ) |
17 |
4
|
nnzd |
|- ( ( ( P e. Prime /\ Q e. Prime ) /\ ( M e. NN /\ N e. NN ) /\ ( P ^ M ) = ( Q ^ N ) ) -> M e. ZZ ) |
18 |
11
|
nnzd |
|- ( ( ( P e. Prime /\ Q e. Prime ) /\ ( M e. NN /\ N e. NN ) /\ ( P ^ M ) = ( Q ^ N ) ) -> N e. ZZ ) |
19 |
|
prmgt1 |
|- ( P e. Prime -> 1 < P ) |
20 |
19
|
ad2antrr |
|- ( ( ( P e. Prime /\ Q e. Prime ) /\ ( M e. NN /\ N e. NN ) ) -> 1 < P ) |
21 |
20
|
3adant3 |
|- ( ( ( P e. Prime /\ Q e. Prime ) /\ ( M e. NN /\ N e. NN ) /\ ( P ^ M ) = ( Q ^ N ) ) -> 1 < P ) |
22 |
|
simp3 |
|- ( ( ( P e. Prime /\ Q e. Prime ) /\ ( M e. NN /\ N e. NN ) /\ ( P ^ M ) = ( Q ^ N ) ) -> ( P ^ M ) = ( Q ^ N ) ) |
23 |
15
|
oveq1d |
|- ( ( ( P e. Prime /\ Q e. Prime ) /\ ( M e. NN /\ N e. NN ) /\ ( P ^ M ) = ( Q ^ N ) ) -> ( P ^ N ) = ( Q ^ N ) ) |
24 |
22 23
|
eqtr4d |
|- ( ( ( P e. Prime /\ Q e. Prime ) /\ ( M e. NN /\ N e. NN ) /\ ( P ^ M ) = ( Q ^ N ) ) -> ( P ^ M ) = ( P ^ N ) ) |
25 |
16 17 18 21 24
|
expcand |
|- ( ( ( P e. Prime /\ Q e. Prime ) /\ ( M e. NN /\ N e. NN ) /\ ( P ^ M ) = ( Q ^ N ) ) -> M = N ) |
26 |
15 25
|
jca |
|- ( ( ( P e. Prime /\ Q e. Prime ) /\ ( M e. NN /\ N e. NN ) /\ ( P ^ M ) = ( Q ^ N ) ) -> ( P = Q /\ M = N ) ) |
27 |
26
|
3expia |
|- ( ( ( P e. Prime /\ Q e. Prime ) /\ ( M e. NN /\ N e. NN ) ) -> ( ( P ^ M ) = ( Q ^ N ) -> ( P = Q /\ M = N ) ) ) |
28 |
|
oveq12 |
|- ( ( P = Q /\ M = N ) -> ( P ^ M ) = ( Q ^ N ) ) |
29 |
27 28
|
impbid1 |
|- ( ( ( P e. Prime /\ Q e. Prime ) /\ ( M e. NN /\ N e. NN ) ) -> ( ( P ^ M ) = ( Q ^ N ) <-> ( P = Q /\ M = N ) ) ) |