| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fveq2 |  |-  ( x = 0 -> ( ! ` x ) = ( ! ` 0 ) ) | 
						
							| 2 | 1 | breq2d |  |-  ( x = 0 -> ( P || ( ! ` x ) <-> P || ( ! ` 0 ) ) ) | 
						
							| 3 |  | breq2 |  |-  ( x = 0 -> ( P <_ x <-> P <_ 0 ) ) | 
						
							| 4 | 2 3 | imbi12d |  |-  ( x = 0 -> ( ( P || ( ! ` x ) -> P <_ x ) <-> ( P || ( ! ` 0 ) -> P <_ 0 ) ) ) | 
						
							| 5 | 4 | imbi2d |  |-  ( x = 0 -> ( ( P e. Prime -> ( P || ( ! ` x ) -> P <_ x ) ) <-> ( P e. Prime -> ( P || ( ! ` 0 ) -> P <_ 0 ) ) ) ) | 
						
							| 6 |  | fveq2 |  |-  ( x = k -> ( ! ` x ) = ( ! ` k ) ) | 
						
							| 7 | 6 | breq2d |  |-  ( x = k -> ( P || ( ! ` x ) <-> P || ( ! ` k ) ) ) | 
						
							| 8 |  | breq2 |  |-  ( x = k -> ( P <_ x <-> P <_ k ) ) | 
						
							| 9 | 7 8 | imbi12d |  |-  ( x = k -> ( ( P || ( ! ` x ) -> P <_ x ) <-> ( P || ( ! ` k ) -> P <_ k ) ) ) | 
						
							| 10 | 9 | imbi2d |  |-  ( x = k -> ( ( P e. Prime -> ( P || ( ! ` x ) -> P <_ x ) ) <-> ( P e. Prime -> ( P || ( ! ` k ) -> P <_ k ) ) ) ) | 
						
							| 11 |  | fveq2 |  |-  ( x = ( k + 1 ) -> ( ! ` x ) = ( ! ` ( k + 1 ) ) ) | 
						
							| 12 | 11 | breq2d |  |-  ( x = ( k + 1 ) -> ( P || ( ! ` x ) <-> P || ( ! ` ( k + 1 ) ) ) ) | 
						
							| 13 |  | breq2 |  |-  ( x = ( k + 1 ) -> ( P <_ x <-> P <_ ( k + 1 ) ) ) | 
						
							| 14 | 12 13 | imbi12d |  |-  ( x = ( k + 1 ) -> ( ( P || ( ! ` x ) -> P <_ x ) <-> ( P || ( ! ` ( k + 1 ) ) -> P <_ ( k + 1 ) ) ) ) | 
						
							| 15 | 14 | imbi2d |  |-  ( x = ( k + 1 ) -> ( ( P e. Prime -> ( P || ( ! ` x ) -> P <_ x ) ) <-> ( P e. Prime -> ( P || ( ! ` ( k + 1 ) ) -> P <_ ( k + 1 ) ) ) ) ) | 
						
							| 16 |  | fveq2 |  |-  ( x = N -> ( ! ` x ) = ( ! ` N ) ) | 
						
							| 17 | 16 | breq2d |  |-  ( x = N -> ( P || ( ! ` x ) <-> P || ( ! ` N ) ) ) | 
						
							| 18 |  | breq2 |  |-  ( x = N -> ( P <_ x <-> P <_ N ) ) | 
						
							| 19 | 17 18 | imbi12d |  |-  ( x = N -> ( ( P || ( ! ` x ) -> P <_ x ) <-> ( P || ( ! ` N ) -> P <_ N ) ) ) | 
						
							| 20 | 19 | imbi2d |  |-  ( x = N -> ( ( P e. Prime -> ( P || ( ! ` x ) -> P <_ x ) ) <-> ( P e. Prime -> ( P || ( ! ` N ) -> P <_ N ) ) ) ) | 
						
							| 21 |  | fac0 |  |-  ( ! ` 0 ) = 1 | 
						
							| 22 | 21 | breq2i |  |-  ( P || ( ! ` 0 ) <-> P || 1 ) | 
						
							| 23 |  | nprmdvds1 |  |-  ( P e. Prime -> -. P || 1 ) | 
						
							| 24 | 23 | pm2.21d |  |-  ( P e. Prime -> ( P || 1 -> P <_ 0 ) ) | 
						
							| 25 | 22 24 | biimtrid |  |-  ( P e. Prime -> ( P || ( ! ` 0 ) -> P <_ 0 ) ) | 
						
							| 26 |  | facp1 |  |-  ( k e. NN0 -> ( ! ` ( k + 1 ) ) = ( ( ! ` k ) x. ( k + 1 ) ) ) | 
						
							| 27 | 26 | adantr |  |-  ( ( k e. NN0 /\ P e. Prime ) -> ( ! ` ( k + 1 ) ) = ( ( ! ` k ) x. ( k + 1 ) ) ) | 
						
							| 28 | 27 | breq2d |  |-  ( ( k e. NN0 /\ P e. Prime ) -> ( P || ( ! ` ( k + 1 ) ) <-> P || ( ( ! ` k ) x. ( k + 1 ) ) ) ) | 
						
							| 29 |  | simpr |  |-  ( ( k e. NN0 /\ P e. Prime ) -> P e. Prime ) | 
						
							| 30 |  | faccl |  |-  ( k e. NN0 -> ( ! ` k ) e. NN ) | 
						
							| 31 | 30 | adantr |  |-  ( ( k e. NN0 /\ P e. Prime ) -> ( ! ` k ) e. NN ) | 
						
							| 32 | 31 | nnzd |  |-  ( ( k e. NN0 /\ P e. Prime ) -> ( ! ` k ) e. ZZ ) | 
						
							| 33 |  | nn0p1nn |  |-  ( k e. NN0 -> ( k + 1 ) e. NN ) | 
						
							| 34 | 33 | adantr |  |-  ( ( k e. NN0 /\ P e. Prime ) -> ( k + 1 ) e. NN ) | 
						
							| 35 | 34 | nnzd |  |-  ( ( k e. NN0 /\ P e. Prime ) -> ( k + 1 ) e. ZZ ) | 
						
							| 36 |  | euclemma |  |-  ( ( P e. Prime /\ ( ! ` k ) e. ZZ /\ ( k + 1 ) e. ZZ ) -> ( P || ( ( ! ` k ) x. ( k + 1 ) ) <-> ( P || ( ! ` k ) \/ P || ( k + 1 ) ) ) ) | 
						
							| 37 | 29 32 35 36 | syl3anc |  |-  ( ( k e. NN0 /\ P e. Prime ) -> ( P || ( ( ! ` k ) x. ( k + 1 ) ) <-> ( P || ( ! ` k ) \/ P || ( k + 1 ) ) ) ) | 
						
							| 38 | 28 37 | bitrd |  |-  ( ( k e. NN0 /\ P e. Prime ) -> ( P || ( ! ` ( k + 1 ) ) <-> ( P || ( ! ` k ) \/ P || ( k + 1 ) ) ) ) | 
						
							| 39 |  | nn0re |  |-  ( k e. NN0 -> k e. RR ) | 
						
							| 40 | 39 | adantr |  |-  ( ( k e. NN0 /\ P e. Prime ) -> k e. RR ) | 
						
							| 41 | 40 | lep1d |  |-  ( ( k e. NN0 /\ P e. Prime ) -> k <_ ( k + 1 ) ) | 
						
							| 42 |  | prmz |  |-  ( P e. Prime -> P e. ZZ ) | 
						
							| 43 | 42 | adantl |  |-  ( ( k e. NN0 /\ P e. Prime ) -> P e. ZZ ) | 
						
							| 44 | 43 | zred |  |-  ( ( k e. NN0 /\ P e. Prime ) -> P e. RR ) | 
						
							| 45 | 34 | nnred |  |-  ( ( k e. NN0 /\ P e. Prime ) -> ( k + 1 ) e. RR ) | 
						
							| 46 |  | letr |  |-  ( ( P e. RR /\ k e. RR /\ ( k + 1 ) e. RR ) -> ( ( P <_ k /\ k <_ ( k + 1 ) ) -> P <_ ( k + 1 ) ) ) | 
						
							| 47 | 44 40 45 46 | syl3anc |  |-  ( ( k e. NN0 /\ P e. Prime ) -> ( ( P <_ k /\ k <_ ( k + 1 ) ) -> P <_ ( k + 1 ) ) ) | 
						
							| 48 | 41 47 | mpan2d |  |-  ( ( k e. NN0 /\ P e. Prime ) -> ( P <_ k -> P <_ ( k + 1 ) ) ) | 
						
							| 49 | 48 | imim2d |  |-  ( ( k e. NN0 /\ P e. Prime ) -> ( ( P || ( ! ` k ) -> P <_ k ) -> ( P || ( ! ` k ) -> P <_ ( k + 1 ) ) ) ) | 
						
							| 50 | 49 | com23 |  |-  ( ( k e. NN0 /\ P e. Prime ) -> ( P || ( ! ` k ) -> ( ( P || ( ! ` k ) -> P <_ k ) -> P <_ ( k + 1 ) ) ) ) | 
						
							| 51 |  | dvdsle |  |-  ( ( P e. ZZ /\ ( k + 1 ) e. NN ) -> ( P || ( k + 1 ) -> P <_ ( k + 1 ) ) ) | 
						
							| 52 | 43 34 51 | syl2anc |  |-  ( ( k e. NN0 /\ P e. Prime ) -> ( P || ( k + 1 ) -> P <_ ( k + 1 ) ) ) | 
						
							| 53 | 52 | a1dd |  |-  ( ( k e. NN0 /\ P e. Prime ) -> ( P || ( k + 1 ) -> ( ( P || ( ! ` k ) -> P <_ k ) -> P <_ ( k + 1 ) ) ) ) | 
						
							| 54 | 50 53 | jaod |  |-  ( ( k e. NN0 /\ P e. Prime ) -> ( ( P || ( ! ` k ) \/ P || ( k + 1 ) ) -> ( ( P || ( ! ` k ) -> P <_ k ) -> P <_ ( k + 1 ) ) ) ) | 
						
							| 55 | 38 54 | sylbid |  |-  ( ( k e. NN0 /\ P e. Prime ) -> ( P || ( ! ` ( k + 1 ) ) -> ( ( P || ( ! ` k ) -> P <_ k ) -> P <_ ( k + 1 ) ) ) ) | 
						
							| 56 | 55 | com23 |  |-  ( ( k e. NN0 /\ P e. Prime ) -> ( ( P || ( ! ` k ) -> P <_ k ) -> ( P || ( ! ` ( k + 1 ) ) -> P <_ ( k + 1 ) ) ) ) | 
						
							| 57 | 56 | ex |  |-  ( k e. NN0 -> ( P e. Prime -> ( ( P || ( ! ` k ) -> P <_ k ) -> ( P || ( ! ` ( k + 1 ) ) -> P <_ ( k + 1 ) ) ) ) ) | 
						
							| 58 | 57 | a2d |  |-  ( k e. NN0 -> ( ( P e. Prime -> ( P || ( ! ` k ) -> P <_ k ) ) -> ( P e. Prime -> ( P || ( ! ` ( k + 1 ) ) -> P <_ ( k + 1 ) ) ) ) ) | 
						
							| 59 | 5 10 15 20 25 58 | nn0ind |  |-  ( N e. NN0 -> ( P e. Prime -> ( P || ( ! ` N ) -> P <_ N ) ) ) | 
						
							| 60 | 59 | 3imp |  |-  ( ( N e. NN0 /\ P e. Prime /\ P || ( ! ` N ) ) -> P <_ N ) |