Step |
Hyp |
Ref |
Expression |
1 |
|
fveq2 |
|- ( x = 0 -> ( ! ` x ) = ( ! ` 0 ) ) |
2 |
1
|
breq2d |
|- ( x = 0 -> ( P || ( ! ` x ) <-> P || ( ! ` 0 ) ) ) |
3 |
|
breq2 |
|- ( x = 0 -> ( P <_ x <-> P <_ 0 ) ) |
4 |
2 3
|
imbi12d |
|- ( x = 0 -> ( ( P || ( ! ` x ) -> P <_ x ) <-> ( P || ( ! ` 0 ) -> P <_ 0 ) ) ) |
5 |
4
|
imbi2d |
|- ( x = 0 -> ( ( P e. Prime -> ( P || ( ! ` x ) -> P <_ x ) ) <-> ( P e. Prime -> ( P || ( ! ` 0 ) -> P <_ 0 ) ) ) ) |
6 |
|
fveq2 |
|- ( x = k -> ( ! ` x ) = ( ! ` k ) ) |
7 |
6
|
breq2d |
|- ( x = k -> ( P || ( ! ` x ) <-> P || ( ! ` k ) ) ) |
8 |
|
breq2 |
|- ( x = k -> ( P <_ x <-> P <_ k ) ) |
9 |
7 8
|
imbi12d |
|- ( x = k -> ( ( P || ( ! ` x ) -> P <_ x ) <-> ( P || ( ! ` k ) -> P <_ k ) ) ) |
10 |
9
|
imbi2d |
|- ( x = k -> ( ( P e. Prime -> ( P || ( ! ` x ) -> P <_ x ) ) <-> ( P e. Prime -> ( P || ( ! ` k ) -> P <_ k ) ) ) ) |
11 |
|
fveq2 |
|- ( x = ( k + 1 ) -> ( ! ` x ) = ( ! ` ( k + 1 ) ) ) |
12 |
11
|
breq2d |
|- ( x = ( k + 1 ) -> ( P || ( ! ` x ) <-> P || ( ! ` ( k + 1 ) ) ) ) |
13 |
|
breq2 |
|- ( x = ( k + 1 ) -> ( P <_ x <-> P <_ ( k + 1 ) ) ) |
14 |
12 13
|
imbi12d |
|- ( x = ( k + 1 ) -> ( ( P || ( ! ` x ) -> P <_ x ) <-> ( P || ( ! ` ( k + 1 ) ) -> P <_ ( k + 1 ) ) ) ) |
15 |
14
|
imbi2d |
|- ( x = ( k + 1 ) -> ( ( P e. Prime -> ( P || ( ! ` x ) -> P <_ x ) ) <-> ( P e. Prime -> ( P || ( ! ` ( k + 1 ) ) -> P <_ ( k + 1 ) ) ) ) ) |
16 |
|
fveq2 |
|- ( x = N -> ( ! ` x ) = ( ! ` N ) ) |
17 |
16
|
breq2d |
|- ( x = N -> ( P || ( ! ` x ) <-> P || ( ! ` N ) ) ) |
18 |
|
breq2 |
|- ( x = N -> ( P <_ x <-> P <_ N ) ) |
19 |
17 18
|
imbi12d |
|- ( x = N -> ( ( P || ( ! ` x ) -> P <_ x ) <-> ( P || ( ! ` N ) -> P <_ N ) ) ) |
20 |
19
|
imbi2d |
|- ( x = N -> ( ( P e. Prime -> ( P || ( ! ` x ) -> P <_ x ) ) <-> ( P e. Prime -> ( P || ( ! ` N ) -> P <_ N ) ) ) ) |
21 |
|
fac0 |
|- ( ! ` 0 ) = 1 |
22 |
21
|
breq2i |
|- ( P || ( ! ` 0 ) <-> P || 1 ) |
23 |
|
nprmdvds1 |
|- ( P e. Prime -> -. P || 1 ) |
24 |
23
|
pm2.21d |
|- ( P e. Prime -> ( P || 1 -> P <_ 0 ) ) |
25 |
22 24
|
syl5bi |
|- ( P e. Prime -> ( P || ( ! ` 0 ) -> P <_ 0 ) ) |
26 |
|
facp1 |
|- ( k e. NN0 -> ( ! ` ( k + 1 ) ) = ( ( ! ` k ) x. ( k + 1 ) ) ) |
27 |
26
|
adantr |
|- ( ( k e. NN0 /\ P e. Prime ) -> ( ! ` ( k + 1 ) ) = ( ( ! ` k ) x. ( k + 1 ) ) ) |
28 |
27
|
breq2d |
|- ( ( k e. NN0 /\ P e. Prime ) -> ( P || ( ! ` ( k + 1 ) ) <-> P || ( ( ! ` k ) x. ( k + 1 ) ) ) ) |
29 |
|
simpr |
|- ( ( k e. NN0 /\ P e. Prime ) -> P e. Prime ) |
30 |
|
faccl |
|- ( k e. NN0 -> ( ! ` k ) e. NN ) |
31 |
30
|
adantr |
|- ( ( k e. NN0 /\ P e. Prime ) -> ( ! ` k ) e. NN ) |
32 |
31
|
nnzd |
|- ( ( k e. NN0 /\ P e. Prime ) -> ( ! ` k ) e. ZZ ) |
33 |
|
nn0p1nn |
|- ( k e. NN0 -> ( k + 1 ) e. NN ) |
34 |
33
|
adantr |
|- ( ( k e. NN0 /\ P e. Prime ) -> ( k + 1 ) e. NN ) |
35 |
34
|
nnzd |
|- ( ( k e. NN0 /\ P e. Prime ) -> ( k + 1 ) e. ZZ ) |
36 |
|
euclemma |
|- ( ( P e. Prime /\ ( ! ` k ) e. ZZ /\ ( k + 1 ) e. ZZ ) -> ( P || ( ( ! ` k ) x. ( k + 1 ) ) <-> ( P || ( ! ` k ) \/ P || ( k + 1 ) ) ) ) |
37 |
29 32 35 36
|
syl3anc |
|- ( ( k e. NN0 /\ P e. Prime ) -> ( P || ( ( ! ` k ) x. ( k + 1 ) ) <-> ( P || ( ! ` k ) \/ P || ( k + 1 ) ) ) ) |
38 |
28 37
|
bitrd |
|- ( ( k e. NN0 /\ P e. Prime ) -> ( P || ( ! ` ( k + 1 ) ) <-> ( P || ( ! ` k ) \/ P || ( k + 1 ) ) ) ) |
39 |
|
nn0re |
|- ( k e. NN0 -> k e. RR ) |
40 |
39
|
adantr |
|- ( ( k e. NN0 /\ P e. Prime ) -> k e. RR ) |
41 |
40
|
lep1d |
|- ( ( k e. NN0 /\ P e. Prime ) -> k <_ ( k + 1 ) ) |
42 |
|
prmz |
|- ( P e. Prime -> P e. ZZ ) |
43 |
42
|
adantl |
|- ( ( k e. NN0 /\ P e. Prime ) -> P e. ZZ ) |
44 |
43
|
zred |
|- ( ( k e. NN0 /\ P e. Prime ) -> P e. RR ) |
45 |
34
|
nnred |
|- ( ( k e. NN0 /\ P e. Prime ) -> ( k + 1 ) e. RR ) |
46 |
|
letr |
|- ( ( P e. RR /\ k e. RR /\ ( k + 1 ) e. RR ) -> ( ( P <_ k /\ k <_ ( k + 1 ) ) -> P <_ ( k + 1 ) ) ) |
47 |
44 40 45 46
|
syl3anc |
|- ( ( k e. NN0 /\ P e. Prime ) -> ( ( P <_ k /\ k <_ ( k + 1 ) ) -> P <_ ( k + 1 ) ) ) |
48 |
41 47
|
mpan2d |
|- ( ( k e. NN0 /\ P e. Prime ) -> ( P <_ k -> P <_ ( k + 1 ) ) ) |
49 |
48
|
imim2d |
|- ( ( k e. NN0 /\ P e. Prime ) -> ( ( P || ( ! ` k ) -> P <_ k ) -> ( P || ( ! ` k ) -> P <_ ( k + 1 ) ) ) ) |
50 |
49
|
com23 |
|- ( ( k e. NN0 /\ P e. Prime ) -> ( P || ( ! ` k ) -> ( ( P || ( ! ` k ) -> P <_ k ) -> P <_ ( k + 1 ) ) ) ) |
51 |
|
dvdsle |
|- ( ( P e. ZZ /\ ( k + 1 ) e. NN ) -> ( P || ( k + 1 ) -> P <_ ( k + 1 ) ) ) |
52 |
43 34 51
|
syl2anc |
|- ( ( k e. NN0 /\ P e. Prime ) -> ( P || ( k + 1 ) -> P <_ ( k + 1 ) ) ) |
53 |
52
|
a1dd |
|- ( ( k e. NN0 /\ P e. Prime ) -> ( P || ( k + 1 ) -> ( ( P || ( ! ` k ) -> P <_ k ) -> P <_ ( k + 1 ) ) ) ) |
54 |
50 53
|
jaod |
|- ( ( k e. NN0 /\ P e. Prime ) -> ( ( P || ( ! ` k ) \/ P || ( k + 1 ) ) -> ( ( P || ( ! ` k ) -> P <_ k ) -> P <_ ( k + 1 ) ) ) ) |
55 |
38 54
|
sylbid |
|- ( ( k e. NN0 /\ P e. Prime ) -> ( P || ( ! ` ( k + 1 ) ) -> ( ( P || ( ! ` k ) -> P <_ k ) -> P <_ ( k + 1 ) ) ) ) |
56 |
55
|
com23 |
|- ( ( k e. NN0 /\ P e. Prime ) -> ( ( P || ( ! ` k ) -> P <_ k ) -> ( P || ( ! ` ( k + 1 ) ) -> P <_ ( k + 1 ) ) ) ) |
57 |
56
|
ex |
|- ( k e. NN0 -> ( P e. Prime -> ( ( P || ( ! ` k ) -> P <_ k ) -> ( P || ( ! ` ( k + 1 ) ) -> P <_ ( k + 1 ) ) ) ) ) |
58 |
57
|
a2d |
|- ( k e. NN0 -> ( ( P e. Prime -> ( P || ( ! ` k ) -> P <_ k ) ) -> ( P e. Prime -> ( P || ( ! ` ( k + 1 ) ) -> P <_ ( k + 1 ) ) ) ) ) |
59 |
5 10 15 20 25 58
|
nn0ind |
|- ( N e. NN0 -> ( P e. Prime -> ( P || ( ! ` N ) -> P <_ N ) ) ) |
60 |
59
|
3imp |
|- ( ( N e. NN0 /\ P e. Prime /\ P || ( ! ` N ) ) -> P <_ N ) |