Description: Perform induction over the multiplicative structure of NN . If a property ph ( x ) holds for the primes and 1 and is preserved under multiplication, then it holds for every positive integer. (Contributed by Mario Carneiro, 20-Jun-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | prmind.1 | |- ( x = 1 -> ( ph <-> ps ) ) |
|
prmind.2 | |- ( x = y -> ( ph <-> ch ) ) |
||
prmind.3 | |- ( x = z -> ( ph <-> th ) ) |
||
prmind.4 | |- ( x = ( y x. z ) -> ( ph <-> ta ) ) |
||
prmind.5 | |- ( x = A -> ( ph <-> et ) ) |
||
prmind.6 | |- ps |
||
prmind.7 | |- ( x e. Prime -> ph ) |
||
prmind.8 | |- ( ( y e. ( ZZ>= ` 2 ) /\ z e. ( ZZ>= ` 2 ) ) -> ( ( ch /\ th ) -> ta ) ) |
||
Assertion | prmind | |- ( A e. NN -> et ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prmind.1 | |- ( x = 1 -> ( ph <-> ps ) ) |
|
2 | prmind.2 | |- ( x = y -> ( ph <-> ch ) ) |
|
3 | prmind.3 | |- ( x = z -> ( ph <-> th ) ) |
|
4 | prmind.4 | |- ( x = ( y x. z ) -> ( ph <-> ta ) ) |
|
5 | prmind.5 | |- ( x = A -> ( ph <-> et ) ) |
|
6 | prmind.6 | |- ps |
|
7 | prmind.7 | |- ( x e. Prime -> ph ) |
|
8 | prmind.8 | |- ( ( y e. ( ZZ>= ` 2 ) /\ z e. ( ZZ>= ` 2 ) ) -> ( ( ch /\ th ) -> ta ) ) |
|
9 | 7 | adantr | |- ( ( x e. Prime /\ A. y e. ( 1 ... ( x - 1 ) ) ch ) -> ph ) |
10 | 1 2 3 4 5 6 9 8 | prmind2 | |- ( A e. NN -> et ) |