Metamath Proof Explorer


Theorem prmind

Description: Perform induction over the multiplicative structure of NN . If a property ph ( x ) holds for the primes and 1 and is preserved under multiplication, then it holds for every positive integer. (Contributed by Mario Carneiro, 20-Jun-2015)

Ref Expression
Hypotheses prmind.1
|- ( x = 1 -> ( ph <-> ps ) )
prmind.2
|- ( x = y -> ( ph <-> ch ) )
prmind.3
|- ( x = z -> ( ph <-> th ) )
prmind.4
|- ( x = ( y x. z ) -> ( ph <-> ta ) )
prmind.5
|- ( x = A -> ( ph <-> et ) )
prmind.6
|- ps
prmind.7
|- ( x e. Prime -> ph )
prmind.8
|- ( ( y e. ( ZZ>= ` 2 ) /\ z e. ( ZZ>= ` 2 ) ) -> ( ( ch /\ th ) -> ta ) )
Assertion prmind
|- ( A e. NN -> et )

Proof

Step Hyp Ref Expression
1 prmind.1
 |-  ( x = 1 -> ( ph <-> ps ) )
2 prmind.2
 |-  ( x = y -> ( ph <-> ch ) )
3 prmind.3
 |-  ( x = z -> ( ph <-> th ) )
4 prmind.4
 |-  ( x = ( y x. z ) -> ( ph <-> ta ) )
5 prmind.5
 |-  ( x = A -> ( ph <-> et ) )
6 prmind.6
 |-  ps
7 prmind.7
 |-  ( x e. Prime -> ph )
8 prmind.8
 |-  ( ( y e. ( ZZ>= ` 2 ) /\ z e. ( ZZ>= ` 2 ) ) -> ( ( ch /\ th ) -> ta ) )
9 7 adantr
 |-  ( ( x e. Prime /\ A. y e. ( 1 ... ( x - 1 ) ) ch ) -> ph )
10 1 2 3 4 5 6 9 8 prmind2
 |-  ( A e. NN -> et )