Metamath Proof Explorer


Theorem prminf

Description: There are an infinite number of primes. Theorem 1.7 in ApostolNT p. 16. (Contributed by Paul Chapman, 28-Nov-2012)

Ref Expression
Assertion prminf
|- Prime ~~ NN

Proof

Step Hyp Ref Expression
1 prmssnn
 |-  Prime C_ NN
2 prmunb
 |-  ( n e. NN -> E. p e. Prime n < p )
3 2 rgen
 |-  A. n e. NN E. p e. Prime n < p
4 unben
 |-  ( ( Prime C_ NN /\ A. n e. NN E. p e. Prime n < p ) -> Prime ~~ NN )
5 1 3 4 mp2an
 |-  Prime ~~ NN