Step |
Hyp |
Ref |
Expression |
1 |
|
prmirred.i |
|- I = ( Irred ` ZZring ) |
2 |
|
zringbas |
|- ZZ = ( Base ` ZZring ) |
3 |
1 2
|
irredcl |
|- ( A e. I -> A e. ZZ ) |
4 |
|
elnn0 |
|- ( A e. NN0 <-> ( A e. NN \/ A = 0 ) ) |
5 |
|
zringring |
|- ZZring e. Ring |
6 |
|
zring0 |
|- 0 = ( 0g ` ZZring ) |
7 |
1 6
|
irredn0 |
|- ( ( ZZring e. Ring /\ A e. I ) -> A =/= 0 ) |
8 |
5 7
|
mpan |
|- ( A e. I -> A =/= 0 ) |
9 |
8
|
necon2bi |
|- ( A = 0 -> -. A e. I ) |
10 |
9
|
pm2.21d |
|- ( A = 0 -> ( A e. I -> A e. NN ) ) |
11 |
10
|
jao1i |
|- ( ( A e. NN \/ A = 0 ) -> ( A e. I -> A e. NN ) ) |
12 |
4 11
|
sylbi |
|- ( A e. NN0 -> ( A e. I -> A e. NN ) ) |
13 |
|
prmnn |
|- ( A e. Prime -> A e. NN ) |
14 |
13
|
a1i |
|- ( A e. NN0 -> ( A e. Prime -> A e. NN ) ) |
15 |
1
|
prmirredlem |
|- ( A e. NN -> ( A e. I <-> A e. Prime ) ) |
16 |
15
|
a1i |
|- ( A e. NN0 -> ( A e. NN -> ( A e. I <-> A e. Prime ) ) ) |
17 |
12 14 16
|
pm5.21ndd |
|- ( A e. NN0 -> ( A e. I <-> A e. Prime ) ) |
18 |
|
nn0re |
|- ( A e. NN0 -> A e. RR ) |
19 |
|
nn0ge0 |
|- ( A e. NN0 -> 0 <_ A ) |
20 |
18 19
|
absidd |
|- ( A e. NN0 -> ( abs ` A ) = A ) |
21 |
20
|
eleq1d |
|- ( A e. NN0 -> ( ( abs ` A ) e. Prime <-> A e. Prime ) ) |
22 |
17 21
|
bitr4d |
|- ( A e. NN0 -> ( A e. I <-> ( abs ` A ) e. Prime ) ) |
23 |
22
|
adantl |
|- ( ( A e. ZZ /\ A e. NN0 ) -> ( A e. I <-> ( abs ` A ) e. Prime ) ) |
24 |
1
|
prmirredlem |
|- ( -u A e. NN -> ( -u A e. I <-> -u A e. Prime ) ) |
25 |
24
|
adantl |
|- ( ( A e. ZZ /\ -u A e. NN ) -> ( -u A e. I <-> -u A e. Prime ) ) |
26 |
|
eqid |
|- ( invg ` ZZring ) = ( invg ` ZZring ) |
27 |
1 26 2
|
irrednegb |
|- ( ( ZZring e. Ring /\ A e. ZZ ) -> ( A e. I <-> ( ( invg ` ZZring ) ` A ) e. I ) ) |
28 |
5 27
|
mpan |
|- ( A e. ZZ -> ( A e. I <-> ( ( invg ` ZZring ) ` A ) e. I ) ) |
29 |
|
zsubrg |
|- ZZ e. ( SubRing ` CCfld ) |
30 |
|
subrgsubg |
|- ( ZZ e. ( SubRing ` CCfld ) -> ZZ e. ( SubGrp ` CCfld ) ) |
31 |
29 30
|
ax-mp |
|- ZZ e. ( SubGrp ` CCfld ) |
32 |
|
df-zring |
|- ZZring = ( CCfld |`s ZZ ) |
33 |
|
eqid |
|- ( invg ` CCfld ) = ( invg ` CCfld ) |
34 |
32 33 26
|
subginv |
|- ( ( ZZ e. ( SubGrp ` CCfld ) /\ A e. ZZ ) -> ( ( invg ` CCfld ) ` A ) = ( ( invg ` ZZring ) ` A ) ) |
35 |
31 34
|
mpan |
|- ( A e. ZZ -> ( ( invg ` CCfld ) ` A ) = ( ( invg ` ZZring ) ` A ) ) |
36 |
|
zcn |
|- ( A e. ZZ -> A e. CC ) |
37 |
|
cnfldneg |
|- ( A e. CC -> ( ( invg ` CCfld ) ` A ) = -u A ) |
38 |
36 37
|
syl |
|- ( A e. ZZ -> ( ( invg ` CCfld ) ` A ) = -u A ) |
39 |
35 38
|
eqtr3d |
|- ( A e. ZZ -> ( ( invg ` ZZring ) ` A ) = -u A ) |
40 |
39
|
eleq1d |
|- ( A e. ZZ -> ( ( ( invg ` ZZring ) ` A ) e. I <-> -u A e. I ) ) |
41 |
28 40
|
bitrd |
|- ( A e. ZZ -> ( A e. I <-> -u A e. I ) ) |
42 |
41
|
adantr |
|- ( ( A e. ZZ /\ -u A e. NN ) -> ( A e. I <-> -u A e. I ) ) |
43 |
|
zre |
|- ( A e. ZZ -> A e. RR ) |
44 |
43
|
adantr |
|- ( ( A e. ZZ /\ -u A e. NN ) -> A e. RR ) |
45 |
|
nnnn0 |
|- ( -u A e. NN -> -u A e. NN0 ) |
46 |
45
|
nn0ge0d |
|- ( -u A e. NN -> 0 <_ -u A ) |
47 |
46
|
adantl |
|- ( ( A e. ZZ /\ -u A e. NN ) -> 0 <_ -u A ) |
48 |
44
|
le0neg1d |
|- ( ( A e. ZZ /\ -u A e. NN ) -> ( A <_ 0 <-> 0 <_ -u A ) ) |
49 |
47 48
|
mpbird |
|- ( ( A e. ZZ /\ -u A e. NN ) -> A <_ 0 ) |
50 |
44 49
|
absnidd |
|- ( ( A e. ZZ /\ -u A e. NN ) -> ( abs ` A ) = -u A ) |
51 |
50
|
eleq1d |
|- ( ( A e. ZZ /\ -u A e. NN ) -> ( ( abs ` A ) e. Prime <-> -u A e. Prime ) ) |
52 |
25 42 51
|
3bitr4d |
|- ( ( A e. ZZ /\ -u A e. NN ) -> ( A e. I <-> ( abs ` A ) e. Prime ) ) |
53 |
52
|
adantrl |
|- ( ( A e. ZZ /\ ( A e. RR /\ -u A e. NN ) ) -> ( A e. I <-> ( abs ` A ) e. Prime ) ) |
54 |
|
elznn0nn |
|- ( A e. ZZ <-> ( A e. NN0 \/ ( A e. RR /\ -u A e. NN ) ) ) |
55 |
54
|
biimpi |
|- ( A e. ZZ -> ( A e. NN0 \/ ( A e. RR /\ -u A e. NN ) ) ) |
56 |
23 53 55
|
mpjaodan |
|- ( A e. ZZ -> ( A e. I <-> ( abs ` A ) e. Prime ) ) |
57 |
3 56
|
biadanii |
|- ( A e. I <-> ( A e. ZZ /\ ( abs ` A ) e. Prime ) ) |