Step |
Hyp |
Ref |
Expression |
1 |
|
prmlem0.1 |
|- ( ( -. 2 || M /\ x e. ( ZZ>= ` M ) ) -> ( ( x e. ( Prime \ { 2 } ) /\ ( x ^ 2 ) <_ N ) -> -. x || N ) ) |
2 |
|
prmlem0.2 |
|- ( K e. Prime -> -. K || N ) |
3 |
|
prmlem0.3 |
|- ( K + 2 ) = M |
4 |
|
eldifi |
|- ( x e. ( Prime \ { 2 } ) -> x e. Prime ) |
5 |
|
eleq1 |
|- ( x = K -> ( x e. Prime <-> K e. Prime ) ) |
6 |
|
breq1 |
|- ( x = K -> ( x || N <-> K || N ) ) |
7 |
6
|
notbid |
|- ( x = K -> ( -. x || N <-> -. K || N ) ) |
8 |
5 7
|
imbi12d |
|- ( x = K -> ( ( x e. Prime -> -. x || N ) <-> ( K e. Prime -> -. K || N ) ) ) |
9 |
2 8
|
mpbiri |
|- ( x = K -> ( x e. Prime -> -. x || N ) ) |
10 |
4 9
|
syl5 |
|- ( x = K -> ( x e. ( Prime \ { 2 } ) -> -. x || N ) ) |
11 |
10
|
adantrd |
|- ( x = K -> ( ( x e. ( Prime \ { 2 } ) /\ ( x ^ 2 ) <_ N ) -> -. x || N ) ) |
12 |
11
|
a1i |
|- ( ( -. 2 || K /\ x e. ( ZZ>= ` K ) ) -> ( x = K -> ( ( x e. ( Prime \ { 2 } ) /\ ( x ^ 2 ) <_ N ) -> -. x || N ) ) ) |
13 |
|
uzp1 |
|- ( x e. ( ZZ>= ` ( K + 1 ) ) -> ( x = ( K + 1 ) \/ x e. ( ZZ>= ` ( ( K + 1 ) + 1 ) ) ) ) |
14 |
|
eleq1 |
|- ( x = ( K + 1 ) -> ( x e. ( Prime \ { 2 } ) <-> ( K + 1 ) e. ( Prime \ { 2 } ) ) ) |
15 |
14
|
adantl |
|- ( ( ( -. 2 || K /\ x e. ( ZZ>= ` K ) ) /\ x = ( K + 1 ) ) -> ( x e. ( Prime \ { 2 } ) <-> ( K + 1 ) e. ( Prime \ { 2 } ) ) ) |
16 |
|
eldifsn |
|- ( ( K + 1 ) e. ( Prime \ { 2 } ) <-> ( ( K + 1 ) e. Prime /\ ( K + 1 ) =/= 2 ) ) |
17 |
|
eluzel2 |
|- ( x e. ( ZZ>= ` K ) -> K e. ZZ ) |
18 |
17
|
adantl |
|- ( ( -. 2 || K /\ x e. ( ZZ>= ` K ) ) -> K e. ZZ ) |
19 |
|
simpl |
|- ( ( -. 2 || K /\ x e. ( ZZ>= ` K ) ) -> -. 2 || K ) |
20 |
|
1z |
|- 1 e. ZZ |
21 |
|
n2dvds1 |
|- -. 2 || 1 |
22 |
|
opoe |
|- ( ( ( K e. ZZ /\ -. 2 || K ) /\ ( 1 e. ZZ /\ -. 2 || 1 ) ) -> 2 || ( K + 1 ) ) |
23 |
20 21 22
|
mpanr12 |
|- ( ( K e. ZZ /\ -. 2 || K ) -> 2 || ( K + 1 ) ) |
24 |
18 19 23
|
syl2anc |
|- ( ( -. 2 || K /\ x e. ( ZZ>= ` K ) ) -> 2 || ( K + 1 ) ) |
25 |
24
|
adantr |
|- ( ( ( -. 2 || K /\ x e. ( ZZ>= ` K ) ) /\ ( K + 1 ) e. Prime ) -> 2 || ( K + 1 ) ) |
26 |
|
2z |
|- 2 e. ZZ |
27 |
|
uzid |
|- ( 2 e. ZZ -> 2 e. ( ZZ>= ` 2 ) ) |
28 |
26 27
|
mp1i |
|- ( ( -. 2 || K /\ x e. ( ZZ>= ` K ) ) -> 2 e. ( ZZ>= ` 2 ) ) |
29 |
|
dvdsprm |
|- ( ( 2 e. ( ZZ>= ` 2 ) /\ ( K + 1 ) e. Prime ) -> ( 2 || ( K + 1 ) <-> 2 = ( K + 1 ) ) ) |
30 |
28 29
|
sylan |
|- ( ( ( -. 2 || K /\ x e. ( ZZ>= ` K ) ) /\ ( K + 1 ) e. Prime ) -> ( 2 || ( K + 1 ) <-> 2 = ( K + 1 ) ) ) |
31 |
25 30
|
mpbid |
|- ( ( ( -. 2 || K /\ x e. ( ZZ>= ` K ) ) /\ ( K + 1 ) e. Prime ) -> 2 = ( K + 1 ) ) |
32 |
31
|
eqcomd |
|- ( ( ( -. 2 || K /\ x e. ( ZZ>= ` K ) ) /\ ( K + 1 ) e. Prime ) -> ( K + 1 ) = 2 ) |
33 |
32
|
a1d |
|- ( ( ( -. 2 || K /\ x e. ( ZZ>= ` K ) ) /\ ( K + 1 ) e. Prime ) -> ( x || N -> ( K + 1 ) = 2 ) ) |
34 |
33
|
necon3ad |
|- ( ( ( -. 2 || K /\ x e. ( ZZ>= ` K ) ) /\ ( K + 1 ) e. Prime ) -> ( ( K + 1 ) =/= 2 -> -. x || N ) ) |
35 |
34
|
expimpd |
|- ( ( -. 2 || K /\ x e. ( ZZ>= ` K ) ) -> ( ( ( K + 1 ) e. Prime /\ ( K + 1 ) =/= 2 ) -> -. x || N ) ) |
36 |
16 35
|
syl5bi |
|- ( ( -. 2 || K /\ x e. ( ZZ>= ` K ) ) -> ( ( K + 1 ) e. ( Prime \ { 2 } ) -> -. x || N ) ) |
37 |
36
|
adantr |
|- ( ( ( -. 2 || K /\ x e. ( ZZ>= ` K ) ) /\ x = ( K + 1 ) ) -> ( ( K + 1 ) e. ( Prime \ { 2 } ) -> -. x || N ) ) |
38 |
15 37
|
sylbid |
|- ( ( ( -. 2 || K /\ x e. ( ZZ>= ` K ) ) /\ x = ( K + 1 ) ) -> ( x e. ( Prime \ { 2 } ) -> -. x || N ) ) |
39 |
38
|
adantrd |
|- ( ( ( -. 2 || K /\ x e. ( ZZ>= ` K ) ) /\ x = ( K + 1 ) ) -> ( ( x e. ( Prime \ { 2 } ) /\ ( x ^ 2 ) <_ N ) -> -. x || N ) ) |
40 |
39
|
ex |
|- ( ( -. 2 || K /\ x e. ( ZZ>= ` K ) ) -> ( x = ( K + 1 ) -> ( ( x e. ( Prime \ { 2 } ) /\ ( x ^ 2 ) <_ N ) -> -. x || N ) ) ) |
41 |
18
|
zcnd |
|- ( ( -. 2 || K /\ x e. ( ZZ>= ` K ) ) -> K e. CC ) |
42 |
|
ax-1cn |
|- 1 e. CC |
43 |
|
addass |
|- ( ( K e. CC /\ 1 e. CC /\ 1 e. CC ) -> ( ( K + 1 ) + 1 ) = ( K + ( 1 + 1 ) ) ) |
44 |
42 42 43
|
mp3an23 |
|- ( K e. CC -> ( ( K + 1 ) + 1 ) = ( K + ( 1 + 1 ) ) ) |
45 |
41 44
|
syl |
|- ( ( -. 2 || K /\ x e. ( ZZ>= ` K ) ) -> ( ( K + 1 ) + 1 ) = ( K + ( 1 + 1 ) ) ) |
46 |
|
1p1e2 |
|- ( 1 + 1 ) = 2 |
47 |
46
|
oveq2i |
|- ( K + ( 1 + 1 ) ) = ( K + 2 ) |
48 |
47 3
|
eqtri |
|- ( K + ( 1 + 1 ) ) = M |
49 |
45 48
|
eqtrdi |
|- ( ( -. 2 || K /\ x e. ( ZZ>= ` K ) ) -> ( ( K + 1 ) + 1 ) = M ) |
50 |
49
|
fveq2d |
|- ( ( -. 2 || K /\ x e. ( ZZ>= ` K ) ) -> ( ZZ>= ` ( ( K + 1 ) + 1 ) ) = ( ZZ>= ` M ) ) |
51 |
50
|
eleq2d |
|- ( ( -. 2 || K /\ x e. ( ZZ>= ` K ) ) -> ( x e. ( ZZ>= ` ( ( K + 1 ) + 1 ) ) <-> x e. ( ZZ>= ` M ) ) ) |
52 |
|
dvdsaddr |
|- ( ( 2 e. ZZ /\ K e. ZZ ) -> ( 2 || K <-> 2 || ( K + 2 ) ) ) |
53 |
26 18 52
|
sylancr |
|- ( ( -. 2 || K /\ x e. ( ZZ>= ` K ) ) -> ( 2 || K <-> 2 || ( K + 2 ) ) ) |
54 |
3
|
breq2i |
|- ( 2 || ( K + 2 ) <-> 2 || M ) |
55 |
53 54
|
bitrdi |
|- ( ( -. 2 || K /\ x e. ( ZZ>= ` K ) ) -> ( 2 || K <-> 2 || M ) ) |
56 |
19 55
|
mtbid |
|- ( ( -. 2 || K /\ x e. ( ZZ>= ` K ) ) -> -. 2 || M ) |
57 |
1
|
ex |
|- ( -. 2 || M -> ( x e. ( ZZ>= ` M ) -> ( ( x e. ( Prime \ { 2 } ) /\ ( x ^ 2 ) <_ N ) -> -. x || N ) ) ) |
58 |
56 57
|
syl |
|- ( ( -. 2 || K /\ x e. ( ZZ>= ` K ) ) -> ( x e. ( ZZ>= ` M ) -> ( ( x e. ( Prime \ { 2 } ) /\ ( x ^ 2 ) <_ N ) -> -. x || N ) ) ) |
59 |
51 58
|
sylbid |
|- ( ( -. 2 || K /\ x e. ( ZZ>= ` K ) ) -> ( x e. ( ZZ>= ` ( ( K + 1 ) + 1 ) ) -> ( ( x e. ( Prime \ { 2 } ) /\ ( x ^ 2 ) <_ N ) -> -. x || N ) ) ) |
60 |
40 59
|
jaod |
|- ( ( -. 2 || K /\ x e. ( ZZ>= ` K ) ) -> ( ( x = ( K + 1 ) \/ x e. ( ZZ>= ` ( ( K + 1 ) + 1 ) ) ) -> ( ( x e. ( Prime \ { 2 } ) /\ ( x ^ 2 ) <_ N ) -> -. x || N ) ) ) |
61 |
13 60
|
syl5 |
|- ( ( -. 2 || K /\ x e. ( ZZ>= ` K ) ) -> ( x e. ( ZZ>= ` ( K + 1 ) ) -> ( ( x e. ( Prime \ { 2 } ) /\ ( x ^ 2 ) <_ N ) -> -. x || N ) ) ) |
62 |
|
uzp1 |
|- ( x e. ( ZZ>= ` K ) -> ( x = K \/ x e. ( ZZ>= ` ( K + 1 ) ) ) ) |
63 |
62
|
adantl |
|- ( ( -. 2 || K /\ x e. ( ZZ>= ` K ) ) -> ( x = K \/ x e. ( ZZ>= ` ( K + 1 ) ) ) ) |
64 |
12 61 63
|
mpjaod |
|- ( ( -. 2 || K /\ x e. ( ZZ>= ` K ) ) -> ( ( x e. ( Prime \ { 2 } ) /\ ( x ^ 2 ) <_ N ) -> -. x || N ) ) |