| Step | Hyp | Ref | Expression | 
						
							| 1 |  | prmlem0.1 |  |-  ( ( -. 2 || M /\ x e. ( ZZ>= ` M ) ) -> ( ( x e. ( Prime \ { 2 } ) /\ ( x ^ 2 ) <_ N ) -> -. x || N ) ) | 
						
							| 2 |  | prmlem0.2 |  |-  ( K e. Prime -> -. K || N ) | 
						
							| 3 |  | prmlem0.3 |  |-  ( K + 2 ) = M | 
						
							| 4 |  | eldifi |  |-  ( x e. ( Prime \ { 2 } ) -> x e. Prime ) | 
						
							| 5 |  | eleq1 |  |-  ( x = K -> ( x e. Prime <-> K e. Prime ) ) | 
						
							| 6 |  | breq1 |  |-  ( x = K -> ( x || N <-> K || N ) ) | 
						
							| 7 | 6 | notbid |  |-  ( x = K -> ( -. x || N <-> -. K || N ) ) | 
						
							| 8 | 5 7 | imbi12d |  |-  ( x = K -> ( ( x e. Prime -> -. x || N ) <-> ( K e. Prime -> -. K || N ) ) ) | 
						
							| 9 | 2 8 | mpbiri |  |-  ( x = K -> ( x e. Prime -> -. x || N ) ) | 
						
							| 10 | 4 9 | syl5 |  |-  ( x = K -> ( x e. ( Prime \ { 2 } ) -> -. x || N ) ) | 
						
							| 11 | 10 | adantrd |  |-  ( x = K -> ( ( x e. ( Prime \ { 2 } ) /\ ( x ^ 2 ) <_ N ) -> -. x || N ) ) | 
						
							| 12 | 11 | a1i |  |-  ( ( -. 2 || K /\ x e. ( ZZ>= ` K ) ) -> ( x = K -> ( ( x e. ( Prime \ { 2 } ) /\ ( x ^ 2 ) <_ N ) -> -. x || N ) ) ) | 
						
							| 13 |  | uzp1 |  |-  ( x e. ( ZZ>= ` ( K + 1 ) ) -> ( x = ( K + 1 ) \/ x e. ( ZZ>= ` ( ( K + 1 ) + 1 ) ) ) ) | 
						
							| 14 |  | eleq1 |  |-  ( x = ( K + 1 ) -> ( x e. ( Prime \ { 2 } ) <-> ( K + 1 ) e. ( Prime \ { 2 } ) ) ) | 
						
							| 15 | 14 | adantl |  |-  ( ( ( -. 2 || K /\ x e. ( ZZ>= ` K ) ) /\ x = ( K + 1 ) ) -> ( x e. ( Prime \ { 2 } ) <-> ( K + 1 ) e. ( Prime \ { 2 } ) ) ) | 
						
							| 16 |  | eldifsn |  |-  ( ( K + 1 ) e. ( Prime \ { 2 } ) <-> ( ( K + 1 ) e. Prime /\ ( K + 1 ) =/= 2 ) ) | 
						
							| 17 |  | eluzel2 |  |-  ( x e. ( ZZ>= ` K ) -> K e. ZZ ) | 
						
							| 18 | 17 | adantl |  |-  ( ( -. 2 || K /\ x e. ( ZZ>= ` K ) ) -> K e. ZZ ) | 
						
							| 19 |  | simpl |  |-  ( ( -. 2 || K /\ x e. ( ZZ>= ` K ) ) -> -. 2 || K ) | 
						
							| 20 |  | 1z |  |-  1 e. ZZ | 
						
							| 21 |  | n2dvds1 |  |-  -. 2 || 1 | 
						
							| 22 |  | opoe |  |-  ( ( ( K e. ZZ /\ -. 2 || K ) /\ ( 1 e. ZZ /\ -. 2 || 1 ) ) -> 2 || ( K + 1 ) ) | 
						
							| 23 | 20 21 22 | mpanr12 |  |-  ( ( K e. ZZ /\ -. 2 || K ) -> 2 || ( K + 1 ) ) | 
						
							| 24 | 18 19 23 | syl2anc |  |-  ( ( -. 2 || K /\ x e. ( ZZ>= ` K ) ) -> 2 || ( K + 1 ) ) | 
						
							| 25 | 24 | adantr |  |-  ( ( ( -. 2 || K /\ x e. ( ZZ>= ` K ) ) /\ ( K + 1 ) e. Prime ) -> 2 || ( K + 1 ) ) | 
						
							| 26 |  | 2z |  |-  2 e. ZZ | 
						
							| 27 |  | uzid |  |-  ( 2 e. ZZ -> 2 e. ( ZZ>= ` 2 ) ) | 
						
							| 28 | 26 27 | mp1i |  |-  ( ( -. 2 || K /\ x e. ( ZZ>= ` K ) ) -> 2 e. ( ZZ>= ` 2 ) ) | 
						
							| 29 |  | dvdsprm |  |-  ( ( 2 e. ( ZZ>= ` 2 ) /\ ( K + 1 ) e. Prime ) -> ( 2 || ( K + 1 ) <-> 2 = ( K + 1 ) ) ) | 
						
							| 30 | 28 29 | sylan |  |-  ( ( ( -. 2 || K /\ x e. ( ZZ>= ` K ) ) /\ ( K + 1 ) e. Prime ) -> ( 2 || ( K + 1 ) <-> 2 = ( K + 1 ) ) ) | 
						
							| 31 | 25 30 | mpbid |  |-  ( ( ( -. 2 || K /\ x e. ( ZZ>= ` K ) ) /\ ( K + 1 ) e. Prime ) -> 2 = ( K + 1 ) ) | 
						
							| 32 | 31 | eqcomd |  |-  ( ( ( -. 2 || K /\ x e. ( ZZ>= ` K ) ) /\ ( K + 1 ) e. Prime ) -> ( K + 1 ) = 2 ) | 
						
							| 33 | 32 | a1d |  |-  ( ( ( -. 2 || K /\ x e. ( ZZ>= ` K ) ) /\ ( K + 1 ) e. Prime ) -> ( x || N -> ( K + 1 ) = 2 ) ) | 
						
							| 34 | 33 | necon3ad |  |-  ( ( ( -. 2 || K /\ x e. ( ZZ>= ` K ) ) /\ ( K + 1 ) e. Prime ) -> ( ( K + 1 ) =/= 2 -> -. x || N ) ) | 
						
							| 35 | 34 | expimpd |  |-  ( ( -. 2 || K /\ x e. ( ZZ>= ` K ) ) -> ( ( ( K + 1 ) e. Prime /\ ( K + 1 ) =/= 2 ) -> -. x || N ) ) | 
						
							| 36 | 16 35 | biimtrid |  |-  ( ( -. 2 || K /\ x e. ( ZZ>= ` K ) ) -> ( ( K + 1 ) e. ( Prime \ { 2 } ) -> -. x || N ) ) | 
						
							| 37 | 36 | adantr |  |-  ( ( ( -. 2 || K /\ x e. ( ZZ>= ` K ) ) /\ x = ( K + 1 ) ) -> ( ( K + 1 ) e. ( Prime \ { 2 } ) -> -. x || N ) ) | 
						
							| 38 | 15 37 | sylbid |  |-  ( ( ( -. 2 || K /\ x e. ( ZZ>= ` K ) ) /\ x = ( K + 1 ) ) -> ( x e. ( Prime \ { 2 } ) -> -. x || N ) ) | 
						
							| 39 | 38 | adantrd |  |-  ( ( ( -. 2 || K /\ x e. ( ZZ>= ` K ) ) /\ x = ( K + 1 ) ) -> ( ( x e. ( Prime \ { 2 } ) /\ ( x ^ 2 ) <_ N ) -> -. x || N ) ) | 
						
							| 40 | 39 | ex |  |-  ( ( -. 2 || K /\ x e. ( ZZ>= ` K ) ) -> ( x = ( K + 1 ) -> ( ( x e. ( Prime \ { 2 } ) /\ ( x ^ 2 ) <_ N ) -> -. x || N ) ) ) | 
						
							| 41 | 18 | zcnd |  |-  ( ( -. 2 || K /\ x e. ( ZZ>= ` K ) ) -> K e. CC ) | 
						
							| 42 |  | ax-1cn |  |-  1 e. CC | 
						
							| 43 |  | addass |  |-  ( ( K e. CC /\ 1 e. CC /\ 1 e. CC ) -> ( ( K + 1 ) + 1 ) = ( K + ( 1 + 1 ) ) ) | 
						
							| 44 | 42 42 43 | mp3an23 |  |-  ( K e. CC -> ( ( K + 1 ) + 1 ) = ( K + ( 1 + 1 ) ) ) | 
						
							| 45 | 41 44 | syl |  |-  ( ( -. 2 || K /\ x e. ( ZZ>= ` K ) ) -> ( ( K + 1 ) + 1 ) = ( K + ( 1 + 1 ) ) ) | 
						
							| 46 |  | 1p1e2 |  |-  ( 1 + 1 ) = 2 | 
						
							| 47 | 46 | oveq2i |  |-  ( K + ( 1 + 1 ) ) = ( K + 2 ) | 
						
							| 48 | 47 3 | eqtri |  |-  ( K + ( 1 + 1 ) ) = M | 
						
							| 49 | 45 48 | eqtrdi |  |-  ( ( -. 2 || K /\ x e. ( ZZ>= ` K ) ) -> ( ( K + 1 ) + 1 ) = M ) | 
						
							| 50 | 49 | fveq2d |  |-  ( ( -. 2 || K /\ x e. ( ZZ>= ` K ) ) -> ( ZZ>= ` ( ( K + 1 ) + 1 ) ) = ( ZZ>= ` M ) ) | 
						
							| 51 | 50 | eleq2d |  |-  ( ( -. 2 || K /\ x e. ( ZZ>= ` K ) ) -> ( x e. ( ZZ>= ` ( ( K + 1 ) + 1 ) ) <-> x e. ( ZZ>= ` M ) ) ) | 
						
							| 52 |  | dvdsaddr |  |-  ( ( 2 e. ZZ /\ K e. ZZ ) -> ( 2 || K <-> 2 || ( K + 2 ) ) ) | 
						
							| 53 | 26 18 52 | sylancr |  |-  ( ( -. 2 || K /\ x e. ( ZZ>= ` K ) ) -> ( 2 || K <-> 2 || ( K + 2 ) ) ) | 
						
							| 54 | 3 | breq2i |  |-  ( 2 || ( K + 2 ) <-> 2 || M ) | 
						
							| 55 | 53 54 | bitrdi |  |-  ( ( -. 2 || K /\ x e. ( ZZ>= ` K ) ) -> ( 2 || K <-> 2 || M ) ) | 
						
							| 56 | 19 55 | mtbid |  |-  ( ( -. 2 || K /\ x e. ( ZZ>= ` K ) ) -> -. 2 || M ) | 
						
							| 57 | 1 | ex |  |-  ( -. 2 || M -> ( x e. ( ZZ>= ` M ) -> ( ( x e. ( Prime \ { 2 } ) /\ ( x ^ 2 ) <_ N ) -> -. x || N ) ) ) | 
						
							| 58 | 56 57 | syl |  |-  ( ( -. 2 || K /\ x e. ( ZZ>= ` K ) ) -> ( x e. ( ZZ>= ` M ) -> ( ( x e. ( Prime \ { 2 } ) /\ ( x ^ 2 ) <_ N ) -> -. x || N ) ) ) | 
						
							| 59 | 51 58 | sylbid |  |-  ( ( -. 2 || K /\ x e. ( ZZ>= ` K ) ) -> ( x e. ( ZZ>= ` ( ( K + 1 ) + 1 ) ) -> ( ( x e. ( Prime \ { 2 } ) /\ ( x ^ 2 ) <_ N ) -> -. x || N ) ) ) | 
						
							| 60 | 40 59 | jaod |  |-  ( ( -. 2 || K /\ x e. ( ZZ>= ` K ) ) -> ( ( x = ( K + 1 ) \/ x e. ( ZZ>= ` ( ( K + 1 ) + 1 ) ) ) -> ( ( x e. ( Prime \ { 2 } ) /\ ( x ^ 2 ) <_ N ) -> -. x || N ) ) ) | 
						
							| 61 | 13 60 | syl5 |  |-  ( ( -. 2 || K /\ x e. ( ZZ>= ` K ) ) -> ( x e. ( ZZ>= ` ( K + 1 ) ) -> ( ( x e. ( Prime \ { 2 } ) /\ ( x ^ 2 ) <_ N ) -> -. x || N ) ) ) | 
						
							| 62 |  | uzp1 |  |-  ( x e. ( ZZ>= ` K ) -> ( x = K \/ x e. ( ZZ>= ` ( K + 1 ) ) ) ) | 
						
							| 63 | 62 | adantl |  |-  ( ( -. 2 || K /\ x e. ( ZZ>= ` K ) ) -> ( x = K \/ x e. ( ZZ>= ` ( K + 1 ) ) ) ) | 
						
							| 64 | 12 61 63 | mpjaod |  |-  ( ( -. 2 || K /\ x e. ( ZZ>= ` K ) ) -> ( ( x e. ( Prime \ { 2 } ) /\ ( x ^ 2 ) <_ N ) -> -. x || N ) ) |