Step |
Hyp |
Ref |
Expression |
1 |
|
prmlem1.n |
|- N e. NN |
2 |
|
prmlem1.gt |
|- 1 < N |
3 |
|
prmlem1.2 |
|- -. 2 || N |
4 |
|
prmlem1.3 |
|- -. 3 || N |
5 |
|
prmlem1.lt |
|- N < ; 2 5 |
6 |
|
eluzelre |
|- ( x e. ( ZZ>= ` 5 ) -> x e. RR ) |
7 |
6
|
resqcld |
|- ( x e. ( ZZ>= ` 5 ) -> ( x ^ 2 ) e. RR ) |
8 |
|
eluzle |
|- ( x e. ( ZZ>= ` 5 ) -> 5 <_ x ) |
9 |
|
5re |
|- 5 e. RR |
10 |
|
5nn0 |
|- 5 e. NN0 |
11 |
10
|
nn0ge0i |
|- 0 <_ 5 |
12 |
|
le2sq2 |
|- ( ( ( 5 e. RR /\ 0 <_ 5 ) /\ ( x e. RR /\ 5 <_ x ) ) -> ( 5 ^ 2 ) <_ ( x ^ 2 ) ) |
13 |
9 11 12
|
mpanl12 |
|- ( ( x e. RR /\ 5 <_ x ) -> ( 5 ^ 2 ) <_ ( x ^ 2 ) ) |
14 |
6 8 13
|
syl2anc |
|- ( x e. ( ZZ>= ` 5 ) -> ( 5 ^ 2 ) <_ ( x ^ 2 ) ) |
15 |
1
|
nnrei |
|- N e. RR |
16 |
9
|
resqcli |
|- ( 5 ^ 2 ) e. RR |
17 |
|
5cn |
|- 5 e. CC |
18 |
17
|
sqvali |
|- ( 5 ^ 2 ) = ( 5 x. 5 ) |
19 |
|
5t5e25 |
|- ( 5 x. 5 ) = ; 2 5 |
20 |
18 19
|
eqtri |
|- ( 5 ^ 2 ) = ; 2 5 |
21 |
5 20
|
breqtrri |
|- N < ( 5 ^ 2 ) |
22 |
|
ltletr |
|- ( ( N e. RR /\ ( 5 ^ 2 ) e. RR /\ ( x ^ 2 ) e. RR ) -> ( ( N < ( 5 ^ 2 ) /\ ( 5 ^ 2 ) <_ ( x ^ 2 ) ) -> N < ( x ^ 2 ) ) ) |
23 |
21 22
|
mpani |
|- ( ( N e. RR /\ ( 5 ^ 2 ) e. RR /\ ( x ^ 2 ) e. RR ) -> ( ( 5 ^ 2 ) <_ ( x ^ 2 ) -> N < ( x ^ 2 ) ) ) |
24 |
15 16 23
|
mp3an12 |
|- ( ( x ^ 2 ) e. RR -> ( ( 5 ^ 2 ) <_ ( x ^ 2 ) -> N < ( x ^ 2 ) ) ) |
25 |
7 14 24
|
sylc |
|- ( x e. ( ZZ>= ` 5 ) -> N < ( x ^ 2 ) ) |
26 |
|
ltnle |
|- ( ( N e. RR /\ ( x ^ 2 ) e. RR ) -> ( N < ( x ^ 2 ) <-> -. ( x ^ 2 ) <_ N ) ) |
27 |
15 7 26
|
sylancr |
|- ( x e. ( ZZ>= ` 5 ) -> ( N < ( x ^ 2 ) <-> -. ( x ^ 2 ) <_ N ) ) |
28 |
25 27
|
mpbid |
|- ( x e. ( ZZ>= ` 5 ) -> -. ( x ^ 2 ) <_ N ) |
29 |
28
|
pm2.21d |
|- ( x e. ( ZZ>= ` 5 ) -> ( ( x ^ 2 ) <_ N -> -. x || N ) ) |
30 |
29
|
adantld |
|- ( x e. ( ZZ>= ` 5 ) -> ( ( x e. ( Prime \ { 2 } ) /\ ( x ^ 2 ) <_ N ) -> -. x || N ) ) |
31 |
30
|
adantl |
|- ( ( -. 2 || 5 /\ x e. ( ZZ>= ` 5 ) ) -> ( ( x e. ( Prime \ { 2 } ) /\ ( x ^ 2 ) <_ N ) -> -. x || N ) ) |
32 |
1 2 3 4 31
|
prmlem1a |
|- N e. Prime |