| Step |
Hyp |
Ref |
Expression |
| 1 |
|
prmlem1.n |
|- N e. NN |
| 2 |
|
prmlem1.gt |
|- 1 < N |
| 3 |
|
prmlem1.2 |
|- -. 2 || N |
| 4 |
|
prmlem1.3 |
|- -. 3 || N |
| 5 |
|
prmlem1a.x |
|- ( ( -. 2 || 5 /\ x e. ( ZZ>= ` 5 ) ) -> ( ( x e. ( Prime \ { 2 } ) /\ ( x ^ 2 ) <_ N ) -> -. x || N ) ) |
| 6 |
|
eluz2b2 |
|- ( N e. ( ZZ>= ` 2 ) <-> ( N e. NN /\ 1 < N ) ) |
| 7 |
1 2 6
|
mpbir2an |
|- N e. ( ZZ>= ` 2 ) |
| 8 |
|
breq1 |
|- ( x = 2 -> ( x || N <-> 2 || N ) ) |
| 9 |
8
|
notbid |
|- ( x = 2 -> ( -. x || N <-> -. 2 || N ) ) |
| 10 |
9
|
imbi2d |
|- ( x = 2 -> ( ( ( x ^ 2 ) <_ N -> -. x || N ) <-> ( ( x ^ 2 ) <_ N -> -. 2 || N ) ) ) |
| 11 |
|
prmnn |
|- ( x e. Prime -> x e. NN ) |
| 12 |
11
|
adantr |
|- ( ( x e. Prime /\ x =/= 2 ) -> x e. NN ) |
| 13 |
|
eldifsn |
|- ( x e. ( Prime \ { 2 } ) <-> ( x e. Prime /\ x =/= 2 ) ) |
| 14 |
|
n2dvds1 |
|- -. 2 || 1 |
| 15 |
4
|
a1i |
|- ( 3 e. Prime -> -. 3 || N ) |
| 16 |
|
3p2e5 |
|- ( 3 + 2 ) = 5 |
| 17 |
5 15 16
|
prmlem0 |
|- ( ( -. 2 || 3 /\ x e. ( ZZ>= ` 3 ) ) -> ( ( x e. ( Prime \ { 2 } ) /\ ( x ^ 2 ) <_ N ) -> -. x || N ) ) |
| 18 |
|
1nprm |
|- -. 1 e. Prime |
| 19 |
18
|
pm2.21i |
|- ( 1 e. Prime -> -. 1 || N ) |
| 20 |
|
1p2e3 |
|- ( 1 + 2 ) = 3 |
| 21 |
17 19 20
|
prmlem0 |
|- ( ( -. 2 || 1 /\ x e. ( ZZ>= ` 1 ) ) -> ( ( x e. ( Prime \ { 2 } ) /\ ( x ^ 2 ) <_ N ) -> -. x || N ) ) |
| 22 |
14 21
|
mpan |
|- ( x e. ( ZZ>= ` 1 ) -> ( ( x e. ( Prime \ { 2 } ) /\ ( x ^ 2 ) <_ N ) -> -. x || N ) ) |
| 23 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
| 24 |
22 23
|
eleq2s |
|- ( x e. NN -> ( ( x e. ( Prime \ { 2 } ) /\ ( x ^ 2 ) <_ N ) -> -. x || N ) ) |
| 25 |
24
|
expd |
|- ( x e. NN -> ( x e. ( Prime \ { 2 } ) -> ( ( x ^ 2 ) <_ N -> -. x || N ) ) ) |
| 26 |
13 25
|
biimtrrid |
|- ( x e. NN -> ( ( x e. Prime /\ x =/= 2 ) -> ( ( x ^ 2 ) <_ N -> -. x || N ) ) ) |
| 27 |
12 26
|
mpcom |
|- ( ( x e. Prime /\ x =/= 2 ) -> ( ( x ^ 2 ) <_ N -> -. x || N ) ) |
| 28 |
3
|
2a1i |
|- ( x e. Prime -> ( ( x ^ 2 ) <_ N -> -. 2 || N ) ) |
| 29 |
10 27 28
|
pm2.61ne |
|- ( x e. Prime -> ( ( x ^ 2 ) <_ N -> -. x || N ) ) |
| 30 |
29
|
rgen |
|- A. x e. Prime ( ( x ^ 2 ) <_ N -> -. x || N ) |
| 31 |
|
isprm5 |
|- ( N e. Prime <-> ( N e. ( ZZ>= ` 2 ) /\ A. x e. Prime ( ( x ^ 2 ) <_ N -> -. x || N ) ) ) |
| 32 |
7 30 31
|
mpbir2an |
|- N e. Prime |