Description: Our last proving session got as far as 25 because we started with the two "bootstrap" primes 2 and 3, and the next prime is 5, so knowing that 2 and 3 are prime and 4 is not allows us to cover the numbers less than 5 ^ 2 = 2 5 . Additionally, nonprimes are "easy", so we can extend this range of known prime/nonprimes all the way until 29, which is the first prime larger than 25. Thus, in this lemma we extend another blanket out to 2 9 ^ 2 = 8 4 1 , from which we can prove even more primes. If we wanted, we could keep doing this, but the goal is Bertrand's postulate, and for that we only need a few large primes - we don't need to find them all, as we have been doing thus far. So after this blanket runs out, we'll have to switch to another method (see 1259prm ).
As a side note, you can see the pattern of the primes in the indentation pattern of this lemma! (Contributed by Mario Carneiro, 18-Feb-2014) (Proof shortened by Mario Carneiro, 20-Apr-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | prmlem2.n | |- N e. NN |
|
prmlem2.lt | |- N < ; ; 8 4 1 |
||
prmlem2.gt | |- 1 < N |
||
prmlem2.2 | |- -. 2 || N |
||
prmlem2.3 | |- -. 3 || N |
||
prmlem2.5 | |- -. 5 || N |
||
prmlem2.7 | |- -. 7 || N |
||
prmlem2.11 | |- -. ; 1 1 || N |
||
prmlem2.13 | |- -. ; 1 3 || N |
||
prmlem2.17 | |- -. ; 1 7 || N |
||
prmlem2.19 | |- -. ; 1 9 || N |
||
prmlem2.23 | |- -. ; 2 3 || N |
||
Assertion | prmlem2 | |- N e. Prime |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prmlem2.n | |- N e. NN |
|
2 | prmlem2.lt | |- N < ; ; 8 4 1 |
|
3 | prmlem2.gt | |- 1 < N |
|
4 | prmlem2.2 | |- -. 2 || N |
|
5 | prmlem2.3 | |- -. 3 || N |
|
6 | prmlem2.5 | |- -. 5 || N |
|
7 | prmlem2.7 | |- -. 7 || N |
|
8 | prmlem2.11 | |- -. ; 1 1 || N |
|
9 | prmlem2.13 | |- -. ; 1 3 || N |
|
10 | prmlem2.17 | |- -. ; 1 7 || N |
|
11 | prmlem2.19 | |- -. ; 1 9 || N |
|
12 | prmlem2.23 | |- -. ; 2 3 || N |
|
13 | eluzelre | |- ( x e. ( ZZ>= ` ; 2 9 ) -> x e. RR ) |
|
14 | 13 | resqcld | |- ( x e. ( ZZ>= ` ; 2 9 ) -> ( x ^ 2 ) e. RR ) |
15 | eluzle | |- ( x e. ( ZZ>= ` ; 2 9 ) -> ; 2 9 <_ x ) |
|
16 | 2nn0 | |- 2 e. NN0 |
|
17 | 9nn0 | |- 9 e. NN0 |
|
18 | 16 17 | deccl | |- ; 2 9 e. NN0 |
19 | 18 | nn0rei | |- ; 2 9 e. RR |
20 | 18 | nn0ge0i | |- 0 <_ ; 2 9 |
21 | le2sq2 | |- ( ( ( ; 2 9 e. RR /\ 0 <_ ; 2 9 ) /\ ( x e. RR /\ ; 2 9 <_ x ) ) -> ( ; 2 9 ^ 2 ) <_ ( x ^ 2 ) ) |
|
22 | 19 20 21 | mpanl12 | |- ( ( x e. RR /\ ; 2 9 <_ x ) -> ( ; 2 9 ^ 2 ) <_ ( x ^ 2 ) ) |
23 | 13 15 22 | syl2anc | |- ( x e. ( ZZ>= ` ; 2 9 ) -> ( ; 2 9 ^ 2 ) <_ ( x ^ 2 ) ) |
24 | 1 | nnrei | |- N e. RR |
25 | 19 | resqcli | |- ( ; 2 9 ^ 2 ) e. RR |
26 | 18 | nn0cni | |- ; 2 9 e. CC |
27 | 26 | sqvali | |- ( ; 2 9 ^ 2 ) = ( ; 2 9 x. ; 2 9 ) |
28 | eqid | |- ; 2 9 = ; 2 9 |
|
29 | 1nn0 | |- 1 e. NN0 |
|
30 | 6nn0 | |- 6 e. NN0 |
|
31 | 16 30 | deccl | |- ; 2 6 e. NN0 |
32 | 5nn0 | |- 5 e. NN0 |
|
33 | 8nn0 | |- 8 e. NN0 |
|
34 | 26 | 2timesi | |- ( 2 x. ; 2 9 ) = ( ; 2 9 + ; 2 9 ) |
35 | 2p2e4 | |- ( 2 + 2 ) = 4 |
|
36 | 35 | oveq1i | |- ( ( 2 + 2 ) + 1 ) = ( 4 + 1 ) |
37 | 4p1e5 | |- ( 4 + 1 ) = 5 |
|
38 | 36 37 | eqtri | |- ( ( 2 + 2 ) + 1 ) = 5 |
39 | 9p9e18 | |- ( 9 + 9 ) = ; 1 8 |
|
40 | 16 17 16 17 28 28 38 33 39 | decaddc | |- ( ; 2 9 + ; 2 9 ) = ; 5 8 |
41 | 34 40 | eqtri | |- ( 2 x. ; 2 9 ) = ; 5 8 |
42 | eqid | |- ; 2 6 = ; 2 6 |
|
43 | 5p2e7 | |- ( 5 + 2 ) = 7 |
|
44 | 43 | oveq1i | |- ( ( 5 + 2 ) + 1 ) = ( 7 + 1 ) |
45 | 7p1e8 | |- ( 7 + 1 ) = 8 |
|
46 | 44 45 | eqtri | |- ( ( 5 + 2 ) + 1 ) = 8 |
47 | 4nn0 | |- 4 e. NN0 |
|
48 | 8p6e14 | |- ( 8 + 6 ) = ; 1 4 |
|
49 | 32 33 16 30 41 42 46 47 48 | decaddc | |- ( ( 2 x. ; 2 9 ) + ; 2 6 ) = ; 8 4 |
50 | 9t2e18 | |- ( 9 x. 2 ) = ; 1 8 |
|
51 | 1p1e2 | |- ( 1 + 1 ) = 2 |
|
52 | 8p8e16 | |- ( 8 + 8 ) = ; 1 6 |
|
53 | 29 33 33 50 51 30 52 | decaddci | |- ( ( 9 x. 2 ) + 8 ) = ; 2 6 |
54 | 9t9e81 | |- ( 9 x. 9 ) = ; 8 1 |
|
55 | 17 16 17 28 29 33 53 54 | decmul2c | |- ( 9 x. ; 2 9 ) = ; ; 2 6 1 |
56 | 18 16 17 28 29 31 49 55 | decmul1c | |- ( ; 2 9 x. ; 2 9 ) = ; ; 8 4 1 |
57 | 27 56 | eqtri | |- ( ; 2 9 ^ 2 ) = ; ; 8 4 1 |
58 | 2 57 | breqtrri | |- N < ( ; 2 9 ^ 2 ) |
59 | ltletr | |- ( ( N e. RR /\ ( ; 2 9 ^ 2 ) e. RR /\ ( x ^ 2 ) e. RR ) -> ( ( N < ( ; 2 9 ^ 2 ) /\ ( ; 2 9 ^ 2 ) <_ ( x ^ 2 ) ) -> N < ( x ^ 2 ) ) ) |
|
60 | 58 59 | mpani | |- ( ( N e. RR /\ ( ; 2 9 ^ 2 ) e. RR /\ ( x ^ 2 ) e. RR ) -> ( ( ; 2 9 ^ 2 ) <_ ( x ^ 2 ) -> N < ( x ^ 2 ) ) ) |
61 | 24 25 60 | mp3an12 | |- ( ( x ^ 2 ) e. RR -> ( ( ; 2 9 ^ 2 ) <_ ( x ^ 2 ) -> N < ( x ^ 2 ) ) ) |
62 | 14 23 61 | sylc | |- ( x e. ( ZZ>= ` ; 2 9 ) -> N < ( x ^ 2 ) ) |
63 | ltnle | |- ( ( N e. RR /\ ( x ^ 2 ) e. RR ) -> ( N < ( x ^ 2 ) <-> -. ( x ^ 2 ) <_ N ) ) |
|
64 | 24 14 63 | sylancr | |- ( x e. ( ZZ>= ` ; 2 9 ) -> ( N < ( x ^ 2 ) <-> -. ( x ^ 2 ) <_ N ) ) |
65 | 62 64 | mpbid | |- ( x e. ( ZZ>= ` ; 2 9 ) -> -. ( x ^ 2 ) <_ N ) |
66 | 65 | pm2.21d | |- ( x e. ( ZZ>= ` ; 2 9 ) -> ( ( x ^ 2 ) <_ N -> -. x || N ) ) |
67 | 66 | adantld | |- ( x e. ( ZZ>= ` ; 2 9 ) -> ( ( x e. ( Prime \ { 2 } ) /\ ( x ^ 2 ) <_ N ) -> -. x || N ) ) |
68 | 67 | adantl | |- ( ( -. 2 || ; 2 9 /\ x e. ( ZZ>= ` ; 2 9 ) ) -> ( ( x e. ( Prime \ { 2 } ) /\ ( x ^ 2 ) <_ N ) -> -. x || N ) ) |
69 | 9nn | |- 9 e. NN |
|
70 | 3nn | |- 3 e. NN |
|
71 | 1lt9 | |- 1 < 9 |
|
72 | 1lt3 | |- 1 < 3 |
|
73 | 9t3e27 | |- ( 9 x. 3 ) = ; 2 7 |
|
74 | 69 70 71 72 73 | nprmi | |- -. ; 2 7 e. Prime |
75 | 74 | pm2.21i | |- ( ; 2 7 e. Prime -> -. ; 2 7 || N ) |
76 | 7nn0 | |- 7 e. NN0 |
|
77 | eqid | |- ; 2 7 = ; 2 7 |
|
78 | 7p2e9 | |- ( 7 + 2 ) = 9 |
|
79 | 16 76 16 77 78 | decaddi | |- ( ; 2 7 + 2 ) = ; 2 9 |
80 | 68 75 79 | prmlem0 | |- ( ( -. 2 || ; 2 7 /\ x e. ( ZZ>= ` ; 2 7 ) ) -> ( ( x e. ( Prime \ { 2 } ) /\ ( x ^ 2 ) <_ N ) -> -. x || N ) ) |
81 | 5nn | |- 5 e. NN |
|
82 | 1lt5 | |- 1 < 5 |
|
83 | 5t5e25 | |- ( 5 x. 5 ) = ; 2 5 |
|
84 | 81 81 82 82 83 | nprmi | |- -. ; 2 5 e. Prime |
85 | 84 | pm2.21i | |- ( ; 2 5 e. Prime -> -. ; 2 5 || N ) |
86 | eqid | |- ; 2 5 = ; 2 5 |
|
87 | 16 32 16 86 43 | decaddi | |- ( ; 2 5 + 2 ) = ; 2 7 |
88 | 80 85 87 | prmlem0 | |- ( ( -. 2 || ; 2 5 /\ x e. ( ZZ>= ` ; 2 5 ) ) -> ( ( x e. ( Prime \ { 2 } ) /\ ( x ^ 2 ) <_ N ) -> -. x || N ) ) |
89 | 12 | a1i | |- ( ; 2 3 e. Prime -> -. ; 2 3 || N ) |
90 | 3nn0 | |- 3 e. NN0 |
|
91 | eqid | |- ; 2 3 = ; 2 3 |
|
92 | 3p2e5 | |- ( 3 + 2 ) = 5 |
|
93 | 16 90 16 91 92 | decaddi | |- ( ; 2 3 + 2 ) = ; 2 5 |
94 | 88 89 93 | prmlem0 | |- ( ( -. 2 || ; 2 3 /\ x e. ( ZZ>= ` ; 2 3 ) ) -> ( ( x e. ( Prime \ { 2 } ) /\ ( x ^ 2 ) <_ N ) -> -. x || N ) ) |
95 | 7nn | |- 7 e. NN |
|
96 | 1lt7 | |- 1 < 7 |
|
97 | 7t3e21 | |- ( 7 x. 3 ) = ; 2 1 |
|
98 | 95 70 96 72 97 | nprmi | |- -. ; 2 1 e. Prime |
99 | 98 | pm2.21i | |- ( ; 2 1 e. Prime -> -. ; 2 1 || N ) |
100 | eqid | |- ; 2 1 = ; 2 1 |
|
101 | 1p2e3 | |- ( 1 + 2 ) = 3 |
|
102 | 16 29 16 100 101 | decaddi | |- ( ; 2 1 + 2 ) = ; 2 3 |
103 | 94 99 102 | prmlem0 | |- ( ( -. 2 || ; 2 1 /\ x e. ( ZZ>= ` ; 2 1 ) ) -> ( ( x e. ( Prime \ { 2 } ) /\ ( x ^ 2 ) <_ N ) -> -. x || N ) ) |
104 | 11 | a1i | |- ( ; 1 9 e. Prime -> -. ; 1 9 || N ) |
105 | eqid | |- ; 1 9 = ; 1 9 |
|
106 | 9p2e11 | |- ( 9 + 2 ) = ; 1 1 |
|
107 | 29 17 16 105 51 29 106 | decaddci | |- ( ; 1 9 + 2 ) = ; 2 1 |
108 | 103 104 107 | prmlem0 | |- ( ( -. 2 || ; 1 9 /\ x e. ( ZZ>= ` ; 1 9 ) ) -> ( ( x e. ( Prime \ { 2 } ) /\ ( x ^ 2 ) <_ N ) -> -. x || N ) ) |
109 | 10 | a1i | |- ( ; 1 7 e. Prime -> -. ; 1 7 || N ) |
110 | eqid | |- ; 1 7 = ; 1 7 |
|
111 | 29 76 16 110 78 | decaddi | |- ( ; 1 7 + 2 ) = ; 1 9 |
112 | 108 109 111 | prmlem0 | |- ( ( -. 2 || ; 1 7 /\ x e. ( ZZ>= ` ; 1 7 ) ) -> ( ( x e. ( Prime \ { 2 } ) /\ ( x ^ 2 ) <_ N ) -> -. x || N ) ) |
113 | 5t3e15 | |- ( 5 x. 3 ) = ; 1 5 |
|
114 | 81 70 82 72 113 | nprmi | |- -. ; 1 5 e. Prime |
115 | 114 | pm2.21i | |- ( ; 1 5 e. Prime -> -. ; 1 5 || N ) |
116 | eqid | |- ; 1 5 = ; 1 5 |
|
117 | 29 32 16 116 43 | decaddi | |- ( ; 1 5 + 2 ) = ; 1 7 |
118 | 112 115 117 | prmlem0 | |- ( ( -. 2 || ; 1 5 /\ x e. ( ZZ>= ` ; 1 5 ) ) -> ( ( x e. ( Prime \ { 2 } ) /\ ( x ^ 2 ) <_ N ) -> -. x || N ) ) |
119 | 9 | a1i | |- ( ; 1 3 e. Prime -> -. ; 1 3 || N ) |
120 | eqid | |- ; 1 3 = ; 1 3 |
|
121 | 29 90 16 120 92 | decaddi | |- ( ; 1 3 + 2 ) = ; 1 5 |
122 | 118 119 121 | prmlem0 | |- ( ( -. 2 || ; 1 3 /\ x e. ( ZZ>= ` ; 1 3 ) ) -> ( ( x e. ( Prime \ { 2 } ) /\ ( x ^ 2 ) <_ N ) -> -. x || N ) ) |
123 | 8 | a1i | |- ( ; 1 1 e. Prime -> -. ; 1 1 || N ) |
124 | eqid | |- ; 1 1 = ; 1 1 |
|
125 | 29 29 16 124 101 | decaddi | |- ( ; 1 1 + 2 ) = ; 1 3 |
126 | 122 123 125 | prmlem0 | |- ( ( -. 2 || ; 1 1 /\ x e. ( ZZ>= ` ; 1 1 ) ) -> ( ( x e. ( Prime \ { 2 } ) /\ ( x ^ 2 ) <_ N ) -> -. x || N ) ) |
127 | 9nprm | |- -. 9 e. Prime |
|
128 | 127 | pm2.21i | |- ( 9 e. Prime -> -. 9 || N ) |
129 | 126 128 106 | prmlem0 | |- ( ( -. 2 || 9 /\ x e. ( ZZ>= ` 9 ) ) -> ( ( x e. ( Prime \ { 2 } ) /\ ( x ^ 2 ) <_ N ) -> -. x || N ) ) |
130 | 7 | a1i | |- ( 7 e. Prime -> -. 7 || N ) |
131 | 129 130 78 | prmlem0 | |- ( ( -. 2 || 7 /\ x e. ( ZZ>= ` 7 ) ) -> ( ( x e. ( Prime \ { 2 } ) /\ ( x ^ 2 ) <_ N ) -> -. x || N ) ) |
132 | 6 | a1i | |- ( 5 e. Prime -> -. 5 || N ) |
133 | 131 132 43 | prmlem0 | |- ( ( -. 2 || 5 /\ x e. ( ZZ>= ` 5 ) ) -> ( ( x e. ( Prime \ { 2 } ) /\ ( x ^ 2 ) <_ N ) -> -. x || N ) ) |
134 | 1 3 4 5 133 | prmlem1a | |- N e. Prime |