Step |
Hyp |
Ref |
Expression |
1 |
|
nn0re |
|- ( N e. NN0 -> N e. RR ) |
2 |
|
prmnn |
|- ( P e. Prime -> P e. NN ) |
3 |
2
|
nnred |
|- ( P e. Prime -> P e. RR ) |
4 |
|
ltnle |
|- ( ( N e. RR /\ P e. RR ) -> ( N < P <-> -. P <_ N ) ) |
5 |
1 3 4
|
syl2anr |
|- ( ( P e. Prime /\ N e. NN0 ) -> ( N < P <-> -. P <_ N ) ) |
6 |
|
prmfac1 |
|- ( ( N e. NN0 /\ P e. Prime /\ P || ( ! ` N ) ) -> P <_ N ) |
7 |
6
|
3exp |
|- ( N e. NN0 -> ( P e. Prime -> ( P || ( ! ` N ) -> P <_ N ) ) ) |
8 |
7
|
impcom |
|- ( ( P e. Prime /\ N e. NN0 ) -> ( P || ( ! ` N ) -> P <_ N ) ) |
9 |
8
|
con3d |
|- ( ( P e. Prime /\ N e. NN0 ) -> ( -. P <_ N -> -. P || ( ! ` N ) ) ) |
10 |
5 9
|
sylbid |
|- ( ( P e. Prime /\ N e. NN0 ) -> ( N < P -> -. P || ( ! ` N ) ) ) |