Metamath Proof Explorer


Theorem prmo0

Description: The primorial of 0. (Contributed by AV, 28-Aug-2020)

Ref Expression
Assertion prmo0
|- ( #p ` 0 ) = 1

Proof

Step Hyp Ref Expression
1 0nn0
 |-  0 e. NN0
2 prmoval
 |-  ( 0 e. NN0 -> ( #p ` 0 ) = prod_ k e. ( 1 ... 0 ) if ( k e. Prime , k , 1 ) )
3 1 2 ax-mp
 |-  ( #p ` 0 ) = prod_ k e. ( 1 ... 0 ) if ( k e. Prime , k , 1 )
4 fz10
 |-  ( 1 ... 0 ) = (/)
5 4 prodeq1i
 |-  prod_ k e. ( 1 ... 0 ) if ( k e. Prime , k , 1 ) = prod_ k e. (/) if ( k e. Prime , k , 1 )
6 prod0
 |-  prod_ k e. (/) if ( k e. Prime , k , 1 ) = 1
7 3 5 6 3eqtri
 |-  ( #p ` 0 ) = 1