Description: The primorial of 0. (Contributed by AV, 28-Aug-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | prmo0 | |- ( #p ` 0 ) = 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0nn0 | |- 0 e. NN0 |
|
2 | prmoval | |- ( 0 e. NN0 -> ( #p ` 0 ) = prod_ k e. ( 1 ... 0 ) if ( k e. Prime , k , 1 ) ) |
|
3 | 1 2 | ax-mp | |- ( #p ` 0 ) = prod_ k e. ( 1 ... 0 ) if ( k e. Prime , k , 1 ) |
4 | fz10 | |- ( 1 ... 0 ) = (/) |
|
5 | 4 | prodeq1i | |- prod_ k e. ( 1 ... 0 ) if ( k e. Prime , k , 1 ) = prod_ k e. (/) if ( k e. Prime , k , 1 ) |
6 | prod0 | |- prod_ k e. (/) if ( k e. Prime , k , 1 ) = 1 |
|
7 | 3 5 6 | 3eqtri | |- ( #p ` 0 ) = 1 |