Step |
Hyp |
Ref |
Expression |
1 |
|
2nn |
|- 2 e. NN |
2 |
|
prmonn2 |
|- ( 2 e. NN -> ( #p ` 2 ) = if ( 2 e. Prime , ( ( #p ` ( 2 - 1 ) ) x. 2 ) , ( #p ` ( 2 - 1 ) ) ) ) |
3 |
1 2
|
ax-mp |
|- ( #p ` 2 ) = if ( 2 e. Prime , ( ( #p ` ( 2 - 1 ) ) x. 2 ) , ( #p ` ( 2 - 1 ) ) ) |
4 |
|
2prm |
|- 2 e. Prime |
5 |
4
|
iftruei |
|- if ( 2 e. Prime , ( ( #p ` ( 2 - 1 ) ) x. 2 ) , ( #p ` ( 2 - 1 ) ) ) = ( ( #p ` ( 2 - 1 ) ) x. 2 ) |
6 |
|
2m1e1 |
|- ( 2 - 1 ) = 1 |
7 |
6
|
fveq2i |
|- ( #p ` ( 2 - 1 ) ) = ( #p ` 1 ) |
8 |
|
prmo1 |
|- ( #p ` 1 ) = 1 |
9 |
7 8
|
eqtri |
|- ( #p ` ( 2 - 1 ) ) = 1 |
10 |
9
|
oveq1i |
|- ( ( #p ` ( 2 - 1 ) ) x. 2 ) = ( 1 x. 2 ) |
11 |
|
2cn |
|- 2 e. CC |
12 |
11
|
mulid2i |
|- ( 1 x. 2 ) = 2 |
13 |
10 12
|
eqtri |
|- ( ( #p ` ( 2 - 1 ) ) x. 2 ) = 2 |
14 |
5 13
|
eqtri |
|- if ( 2 e. Prime , ( ( #p ` ( 2 - 1 ) ) x. 2 ) , ( #p ` ( 2 - 1 ) ) ) = 2 |
15 |
3 14
|
eqtri |
|- ( #p ` 2 ) = 2 |