| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 5nn |  |-  5 e. NN | 
						
							| 2 |  | prmonn2 |  |-  ( 5 e. NN -> ( #p ` 5 ) = if ( 5 e. Prime , ( ( #p ` ( 5 - 1 ) ) x. 5 ) , ( #p ` ( 5 - 1 ) ) ) ) | 
						
							| 3 | 1 2 | ax-mp |  |-  ( #p ` 5 ) = if ( 5 e. Prime , ( ( #p ` ( 5 - 1 ) ) x. 5 ) , ( #p ` ( 5 - 1 ) ) ) | 
						
							| 4 |  | 5prm |  |-  5 e. Prime | 
						
							| 5 | 4 | iftruei |  |-  if ( 5 e. Prime , ( ( #p ` ( 5 - 1 ) ) x. 5 ) , ( #p ` ( 5 - 1 ) ) ) = ( ( #p ` ( 5 - 1 ) ) x. 5 ) | 
						
							| 6 |  | 5m1e4 |  |-  ( 5 - 1 ) = 4 | 
						
							| 7 | 6 | fveq2i |  |-  ( #p ` ( 5 - 1 ) ) = ( #p ` 4 ) | 
						
							| 8 |  | prmo4 |  |-  ( #p ` 4 ) = 6 | 
						
							| 9 | 7 8 | eqtri |  |-  ( #p ` ( 5 - 1 ) ) = 6 | 
						
							| 10 | 9 | oveq1i |  |-  ( ( #p ` ( 5 - 1 ) ) x. 5 ) = ( 6 x. 5 ) | 
						
							| 11 |  | 6t5e30 |  |-  ( 6 x. 5 ) = ; 3 0 | 
						
							| 12 | 10 11 | eqtri |  |-  ( ( #p ` ( 5 - 1 ) ) x. 5 ) = ; 3 0 | 
						
							| 13 | 5 12 | eqtri |  |-  if ( 5 e. Prime , ( ( #p ` ( 5 - 1 ) ) x. 5 ) , ( #p ` ( 5 - 1 ) ) ) = ; 3 0 | 
						
							| 14 | 3 13 | eqtri |  |-  ( #p ` 5 ) = ; 3 0 |