Step |
Hyp |
Ref |
Expression |
1 |
|
5nn |
|- 5 e. NN |
2 |
|
prmonn2 |
|- ( 5 e. NN -> ( #p ` 5 ) = if ( 5 e. Prime , ( ( #p ` ( 5 - 1 ) ) x. 5 ) , ( #p ` ( 5 - 1 ) ) ) ) |
3 |
1 2
|
ax-mp |
|- ( #p ` 5 ) = if ( 5 e. Prime , ( ( #p ` ( 5 - 1 ) ) x. 5 ) , ( #p ` ( 5 - 1 ) ) ) |
4 |
|
5prm |
|- 5 e. Prime |
5 |
4
|
iftruei |
|- if ( 5 e. Prime , ( ( #p ` ( 5 - 1 ) ) x. 5 ) , ( #p ` ( 5 - 1 ) ) ) = ( ( #p ` ( 5 - 1 ) ) x. 5 ) |
6 |
|
5m1e4 |
|- ( 5 - 1 ) = 4 |
7 |
6
|
fveq2i |
|- ( #p ` ( 5 - 1 ) ) = ( #p ` 4 ) |
8 |
|
prmo4 |
|- ( #p ` 4 ) = 6 |
9 |
7 8
|
eqtri |
|- ( #p ` ( 5 - 1 ) ) = 6 |
10 |
9
|
oveq1i |
|- ( ( #p ` ( 5 - 1 ) ) x. 5 ) = ( 6 x. 5 ) |
11 |
|
6t5e30 |
|- ( 6 x. 5 ) = ; 3 0 |
12 |
10 11
|
eqtri |
|- ( ( #p ` ( 5 - 1 ) ) x. 5 ) = ; 3 0 |
13 |
5 12
|
eqtri |
|- if ( 5 e. Prime , ( ( #p ` ( 5 - 1 ) ) x. 5 ) , ( #p ` ( 5 - 1 ) ) ) = ; 3 0 |
14 |
3 13
|
eqtri |
|- ( #p ` 5 ) = ; 3 0 |