| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 6nn |  |-  6 e. NN | 
						
							| 2 |  | prmonn2 |  |-  ( 6 e. NN -> ( #p ` 6 ) = if ( 6 e. Prime , ( ( #p ` ( 6 - 1 ) ) x. 6 ) , ( #p ` ( 6 - 1 ) ) ) ) | 
						
							| 3 | 1 2 | ax-mp |  |-  ( #p ` 6 ) = if ( 6 e. Prime , ( ( #p ` ( 6 - 1 ) ) x. 6 ) , ( #p ` ( 6 - 1 ) ) ) | 
						
							| 4 |  | 6nprm |  |-  -. 6 e. Prime | 
						
							| 5 | 4 | iffalsei |  |-  if ( 6 e. Prime , ( ( #p ` ( 6 - 1 ) ) x. 6 ) , ( #p ` ( 6 - 1 ) ) ) = ( #p ` ( 6 - 1 ) ) | 
						
							| 6 | 3 5 | eqtri |  |-  ( #p ` 6 ) = ( #p ` ( 6 - 1 ) ) | 
						
							| 7 |  | 6m1e5 |  |-  ( 6 - 1 ) = 5 | 
						
							| 8 | 7 | fveq2i |  |-  ( #p ` ( 6 - 1 ) ) = ( #p ` 5 ) | 
						
							| 9 |  | prmo5 |  |-  ( #p ` 5 ) = ; 3 0 | 
						
							| 10 | 8 9 | eqtri |  |-  ( #p ` ( 6 - 1 ) ) = ; 3 0 | 
						
							| 11 | 6 10 | eqtri |  |-  ( #p ` 6 ) = ; 3 0 |