| Step |
Hyp |
Ref |
Expression |
| 1 |
|
prmoval |
|- ( N e. NN0 -> ( #p ` N ) = prod_ k e. ( 1 ... N ) if ( k e. Prime , k , 1 ) ) |
| 2 |
|
fzfid |
|- ( N e. NN0 -> ( 1 ... N ) e. Fin ) |
| 3 |
|
elfznn |
|- ( k e. ( 1 ... N ) -> k e. NN ) |
| 4 |
3
|
adantl |
|- ( ( N e. NN0 /\ k e. ( 1 ... N ) ) -> k e. NN ) |
| 5 |
|
1nn |
|- 1 e. NN |
| 6 |
5
|
a1i |
|- ( ( N e. NN0 /\ k e. ( 1 ... N ) ) -> 1 e. NN ) |
| 7 |
4 6
|
ifcld |
|- ( ( N e. NN0 /\ k e. ( 1 ... N ) ) -> if ( k e. Prime , k , 1 ) e. NN ) |
| 8 |
2 7
|
fprodnncl |
|- ( N e. NN0 -> prod_ k e. ( 1 ... N ) if ( k e. Prime , k , 1 ) e. NN ) |
| 9 |
1 8
|
eqeltrd |
|- ( N e. NN0 -> ( #p ` N ) e. NN ) |