Step |
Hyp |
Ref |
Expression |
1 |
|
prmocl |
|- ( N e. NN0 -> ( #p ` N ) e. NN ) |
2 |
1
|
nnzd |
|- ( N e. NN0 -> ( #p ` N ) e. ZZ ) |
3 |
|
fzssz |
|- ( 1 ... N ) C_ ZZ |
4 |
|
fzfid |
|- ( N e. NN0 -> ( 1 ... N ) e. Fin ) |
5 |
|
0nelfz1 |
|- 0 e/ ( 1 ... N ) |
6 |
5
|
a1i |
|- ( N e. NN0 -> 0 e/ ( 1 ... N ) ) |
7 |
|
lcmfn0cl |
|- ( ( ( 1 ... N ) C_ ZZ /\ ( 1 ... N ) e. Fin /\ 0 e/ ( 1 ... N ) ) -> ( _lcm ` ( 1 ... N ) ) e. NN ) |
8 |
3 4 6 7
|
mp3an2i |
|- ( N e. NN0 -> ( _lcm ` ( 1 ... N ) ) e. NN ) |
9 |
2 8
|
jca |
|- ( N e. NN0 -> ( ( #p ` N ) e. ZZ /\ ( _lcm ` ( 1 ... N ) ) e. NN ) ) |
10 |
|
prmodvdslcmf |
|- ( N e. NN0 -> ( #p ` N ) || ( _lcm ` ( 1 ... N ) ) ) |
11 |
|
dvdsle |
|- ( ( ( #p ` N ) e. ZZ /\ ( _lcm ` ( 1 ... N ) ) e. NN ) -> ( ( #p ` N ) || ( _lcm ` ( 1 ... N ) ) -> ( #p ` N ) <_ ( _lcm ` ( 1 ... N ) ) ) ) |
12 |
9 10 11
|
sylc |
|- ( N e. NN0 -> ( #p ` N ) <_ ( _lcm ` ( 1 ... N ) ) ) |