| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							prmocl | 
							 |-  ( N e. NN0 -> ( #p ` N ) e. NN )  | 
						
						
							| 2 | 
							
								1
							 | 
							nnzd | 
							 |-  ( N e. NN0 -> ( #p ` N ) e. ZZ )  | 
						
						
							| 3 | 
							
								
							 | 
							fzssz | 
							 |-  ( 1 ... N ) C_ ZZ  | 
						
						
							| 4 | 
							
								
							 | 
							fzfid | 
							 |-  ( N e. NN0 -> ( 1 ... N ) e. Fin )  | 
						
						
							| 5 | 
							
								
							 | 
							0nelfz1 | 
							 |-  0 e/ ( 1 ... N )  | 
						
						
							| 6 | 
							
								5
							 | 
							a1i | 
							 |-  ( N e. NN0 -> 0 e/ ( 1 ... N ) )  | 
						
						
							| 7 | 
							
								
							 | 
							lcmfn0cl | 
							 |-  ( ( ( 1 ... N ) C_ ZZ /\ ( 1 ... N ) e. Fin /\ 0 e/ ( 1 ... N ) ) -> ( _lcm ` ( 1 ... N ) ) e. NN )  | 
						
						
							| 8 | 
							
								3 4 6 7
							 | 
							mp3an2i | 
							 |-  ( N e. NN0 -> ( _lcm ` ( 1 ... N ) ) e. NN )  | 
						
						
							| 9 | 
							
								2 8
							 | 
							jca | 
							 |-  ( N e. NN0 -> ( ( #p ` N ) e. ZZ /\ ( _lcm ` ( 1 ... N ) ) e. NN ) )  | 
						
						
							| 10 | 
							
								
							 | 
							prmodvdslcmf | 
							 |-  ( N e. NN0 -> ( #p ` N ) || ( _lcm ` ( 1 ... N ) ) )  | 
						
						
							| 11 | 
							
								
							 | 
							dvdsle | 
							 |-  ( ( ( #p ` N ) e. ZZ /\ ( _lcm ` ( 1 ... N ) ) e. NN ) -> ( ( #p ` N ) || ( _lcm ` ( 1 ... N ) ) -> ( #p ` N ) <_ ( _lcm ` ( 1 ... N ) ) ) )  | 
						
						
							| 12 | 
							
								9 10 11
							 | 
							sylc | 
							 |-  ( N e. NN0 -> ( #p ` N ) <_ ( _lcm ` ( 1 ... N ) ) )  |