| Step | Hyp | Ref | Expression | 
						
							| 1 |  | prmorcht.1 |  |-  F = ( n e. NN |-> if ( n e. Prime , n , 1 ) ) | 
						
							| 2 |  | nnre |  |-  ( A e. NN -> A e. RR ) | 
						
							| 3 |  | chtval |  |-  ( A e. RR -> ( theta ` A ) = sum_ k e. ( ( 0 [,] A ) i^i Prime ) ( log ` k ) ) | 
						
							| 4 | 2 3 | syl |  |-  ( A e. NN -> ( theta ` A ) = sum_ k e. ( ( 0 [,] A ) i^i Prime ) ( log ` k ) ) | 
						
							| 5 |  | 2eluzge1 |  |-  2 e. ( ZZ>= ` 1 ) | 
						
							| 6 |  | ppisval2 |  |-  ( ( A e. RR /\ 2 e. ( ZZ>= ` 1 ) ) -> ( ( 0 [,] A ) i^i Prime ) = ( ( 1 ... ( |_ ` A ) ) i^i Prime ) ) | 
						
							| 7 | 2 5 6 | sylancl |  |-  ( A e. NN -> ( ( 0 [,] A ) i^i Prime ) = ( ( 1 ... ( |_ ` A ) ) i^i Prime ) ) | 
						
							| 8 |  | nnz |  |-  ( A e. NN -> A e. ZZ ) | 
						
							| 9 |  | flid |  |-  ( A e. ZZ -> ( |_ ` A ) = A ) | 
						
							| 10 | 8 9 | syl |  |-  ( A e. NN -> ( |_ ` A ) = A ) | 
						
							| 11 | 10 | oveq2d |  |-  ( A e. NN -> ( 1 ... ( |_ ` A ) ) = ( 1 ... A ) ) | 
						
							| 12 | 11 | ineq1d |  |-  ( A e. NN -> ( ( 1 ... ( |_ ` A ) ) i^i Prime ) = ( ( 1 ... A ) i^i Prime ) ) | 
						
							| 13 | 7 12 | eqtrd |  |-  ( A e. NN -> ( ( 0 [,] A ) i^i Prime ) = ( ( 1 ... A ) i^i Prime ) ) | 
						
							| 14 | 13 | sumeq1d |  |-  ( A e. NN -> sum_ k e. ( ( 0 [,] A ) i^i Prime ) ( log ` k ) = sum_ k e. ( ( 1 ... A ) i^i Prime ) ( log ` k ) ) | 
						
							| 15 |  | inss1 |  |-  ( ( 1 ... A ) i^i Prime ) C_ ( 1 ... A ) | 
						
							| 16 |  | elinel1 |  |-  ( k e. ( ( 1 ... A ) i^i Prime ) -> k e. ( 1 ... A ) ) | 
						
							| 17 |  | elfznn |  |-  ( k e. ( 1 ... A ) -> k e. NN ) | 
						
							| 18 | 17 | adantl |  |-  ( ( A e. NN /\ k e. ( 1 ... A ) ) -> k e. NN ) | 
						
							| 19 | 18 | nnrpd |  |-  ( ( A e. NN /\ k e. ( 1 ... A ) ) -> k e. RR+ ) | 
						
							| 20 | 19 | relogcld |  |-  ( ( A e. NN /\ k e. ( 1 ... A ) ) -> ( log ` k ) e. RR ) | 
						
							| 21 | 20 | recnd |  |-  ( ( A e. NN /\ k e. ( 1 ... A ) ) -> ( log ` k ) e. CC ) | 
						
							| 22 | 16 21 | sylan2 |  |-  ( ( A e. NN /\ k e. ( ( 1 ... A ) i^i Prime ) ) -> ( log ` k ) e. CC ) | 
						
							| 23 | 22 | ralrimiva |  |-  ( A e. NN -> A. k e. ( ( 1 ... A ) i^i Prime ) ( log ` k ) e. CC ) | 
						
							| 24 |  | fzfi |  |-  ( 1 ... A ) e. Fin | 
						
							| 25 | 24 | olci |  |-  ( ( 1 ... A ) C_ ( ZZ>= ` 1 ) \/ ( 1 ... A ) e. Fin ) | 
						
							| 26 |  | sumss2 |  |-  ( ( ( ( ( 1 ... A ) i^i Prime ) C_ ( 1 ... A ) /\ A. k e. ( ( 1 ... A ) i^i Prime ) ( log ` k ) e. CC ) /\ ( ( 1 ... A ) C_ ( ZZ>= ` 1 ) \/ ( 1 ... A ) e. Fin ) ) -> sum_ k e. ( ( 1 ... A ) i^i Prime ) ( log ` k ) = sum_ k e. ( 1 ... A ) if ( k e. ( ( 1 ... A ) i^i Prime ) , ( log ` k ) , 0 ) ) | 
						
							| 27 | 25 26 | mpan2 |  |-  ( ( ( ( 1 ... A ) i^i Prime ) C_ ( 1 ... A ) /\ A. k e. ( ( 1 ... A ) i^i Prime ) ( log ` k ) e. CC ) -> sum_ k e. ( ( 1 ... A ) i^i Prime ) ( log ` k ) = sum_ k e. ( 1 ... A ) if ( k e. ( ( 1 ... A ) i^i Prime ) , ( log ` k ) , 0 ) ) | 
						
							| 28 | 15 23 27 | sylancr |  |-  ( A e. NN -> sum_ k e. ( ( 1 ... A ) i^i Prime ) ( log ` k ) = sum_ k e. ( 1 ... A ) if ( k e. ( ( 1 ... A ) i^i Prime ) , ( log ` k ) , 0 ) ) | 
						
							| 29 | 14 28 | eqtrd |  |-  ( A e. NN -> sum_ k e. ( ( 0 [,] A ) i^i Prime ) ( log ` k ) = sum_ k e. ( 1 ... A ) if ( k e. ( ( 1 ... A ) i^i Prime ) , ( log ` k ) , 0 ) ) | 
						
							| 30 | 4 29 | eqtrd |  |-  ( A e. NN -> ( theta ` A ) = sum_ k e. ( 1 ... A ) if ( k e. ( ( 1 ... A ) i^i Prime ) , ( log ` k ) , 0 ) ) | 
						
							| 31 |  | elin |  |-  ( k e. ( ( 1 ... A ) i^i Prime ) <-> ( k e. ( 1 ... A ) /\ k e. Prime ) ) | 
						
							| 32 | 31 | baibr |  |-  ( k e. ( 1 ... A ) -> ( k e. Prime <-> k e. ( ( 1 ... A ) i^i Prime ) ) ) | 
						
							| 33 | 32 | ifbid |  |-  ( k e. ( 1 ... A ) -> if ( k e. Prime , ( log ` k ) , 0 ) = if ( k e. ( ( 1 ... A ) i^i Prime ) , ( log ` k ) , 0 ) ) | 
						
							| 34 | 33 | sumeq2i |  |-  sum_ k e. ( 1 ... A ) if ( k e. Prime , ( log ` k ) , 0 ) = sum_ k e. ( 1 ... A ) if ( k e. ( ( 1 ... A ) i^i Prime ) , ( log ` k ) , 0 ) | 
						
							| 35 | 30 34 | eqtr4di |  |-  ( A e. NN -> ( theta ` A ) = sum_ k e. ( 1 ... A ) if ( k e. Prime , ( log ` k ) , 0 ) ) | 
						
							| 36 |  | eleq1w |  |-  ( n = k -> ( n e. Prime <-> k e. Prime ) ) | 
						
							| 37 |  | fveq2 |  |-  ( n = k -> ( log ` n ) = ( log ` k ) ) | 
						
							| 38 | 36 37 | ifbieq1d |  |-  ( n = k -> if ( n e. Prime , ( log ` n ) , 0 ) = if ( k e. Prime , ( log ` k ) , 0 ) ) | 
						
							| 39 |  | eqid |  |-  ( n e. NN |-> if ( n e. Prime , ( log ` n ) , 0 ) ) = ( n e. NN |-> if ( n e. Prime , ( log ` n ) , 0 ) ) | 
						
							| 40 |  | fvex |  |-  ( log ` k ) e. _V | 
						
							| 41 |  | 0cn |  |-  0 e. CC | 
						
							| 42 | 41 | elexi |  |-  0 e. _V | 
						
							| 43 | 40 42 | ifex |  |-  if ( k e. Prime , ( log ` k ) , 0 ) e. _V | 
						
							| 44 | 38 39 43 | fvmpt |  |-  ( k e. NN -> ( ( n e. NN |-> if ( n e. Prime , ( log ` n ) , 0 ) ) ` k ) = if ( k e. Prime , ( log ` k ) , 0 ) ) | 
						
							| 45 | 18 44 | syl |  |-  ( ( A e. NN /\ k e. ( 1 ... A ) ) -> ( ( n e. NN |-> if ( n e. Prime , ( log ` n ) , 0 ) ) ` k ) = if ( k e. Prime , ( log ` k ) , 0 ) ) | 
						
							| 46 |  | elnnuz |  |-  ( A e. NN <-> A e. ( ZZ>= ` 1 ) ) | 
						
							| 47 | 46 | biimpi |  |-  ( A e. NN -> A e. ( ZZ>= ` 1 ) ) | 
						
							| 48 |  | ifcl |  |-  ( ( ( log ` k ) e. CC /\ 0 e. CC ) -> if ( k e. Prime , ( log ` k ) , 0 ) e. CC ) | 
						
							| 49 | 21 41 48 | sylancl |  |-  ( ( A e. NN /\ k e. ( 1 ... A ) ) -> if ( k e. Prime , ( log ` k ) , 0 ) e. CC ) | 
						
							| 50 | 45 47 49 | fsumser |  |-  ( A e. NN -> sum_ k e. ( 1 ... A ) if ( k e. Prime , ( log ` k ) , 0 ) = ( seq 1 ( + , ( n e. NN |-> if ( n e. Prime , ( log ` n ) , 0 ) ) ) ` A ) ) | 
						
							| 51 | 35 50 | eqtrd |  |-  ( A e. NN -> ( theta ` A ) = ( seq 1 ( + , ( n e. NN |-> if ( n e. Prime , ( log ` n ) , 0 ) ) ) ` A ) ) | 
						
							| 52 | 51 | fveq2d |  |-  ( A e. NN -> ( exp ` ( theta ` A ) ) = ( exp ` ( seq 1 ( + , ( n e. NN |-> if ( n e. Prime , ( log ` n ) , 0 ) ) ) ` A ) ) ) | 
						
							| 53 |  | addcl |  |-  ( ( k e. CC /\ p e. CC ) -> ( k + p ) e. CC ) | 
						
							| 54 | 53 | adantl |  |-  ( ( A e. NN /\ ( k e. CC /\ p e. CC ) ) -> ( k + p ) e. CC ) | 
						
							| 55 | 45 49 | eqeltrd |  |-  ( ( A e. NN /\ k e. ( 1 ... A ) ) -> ( ( n e. NN |-> if ( n e. Prime , ( log ` n ) , 0 ) ) ` k ) e. CC ) | 
						
							| 56 |  | efadd |  |-  ( ( k e. CC /\ p e. CC ) -> ( exp ` ( k + p ) ) = ( ( exp ` k ) x. ( exp ` p ) ) ) | 
						
							| 57 | 56 | adantl |  |-  ( ( A e. NN /\ ( k e. CC /\ p e. CC ) ) -> ( exp ` ( k + p ) ) = ( ( exp ` k ) x. ( exp ` p ) ) ) | 
						
							| 58 |  | 1nn |  |-  1 e. NN | 
						
							| 59 |  | ifcl |  |-  ( ( k e. NN /\ 1 e. NN ) -> if ( k e. Prime , k , 1 ) e. NN ) | 
						
							| 60 | 18 58 59 | sylancl |  |-  ( ( A e. NN /\ k e. ( 1 ... A ) ) -> if ( k e. Prime , k , 1 ) e. NN ) | 
						
							| 61 | 60 | nnrpd |  |-  ( ( A e. NN /\ k e. ( 1 ... A ) ) -> if ( k e. Prime , k , 1 ) e. RR+ ) | 
						
							| 62 | 61 | reeflogd |  |-  ( ( A e. NN /\ k e. ( 1 ... A ) ) -> ( exp ` ( log ` if ( k e. Prime , k , 1 ) ) ) = if ( k e. Prime , k , 1 ) ) | 
						
							| 63 |  | fvif |  |-  ( log ` if ( k e. Prime , k , 1 ) ) = if ( k e. Prime , ( log ` k ) , ( log ` 1 ) ) | 
						
							| 64 |  | log1 |  |-  ( log ` 1 ) = 0 | 
						
							| 65 |  | ifeq2 |  |-  ( ( log ` 1 ) = 0 -> if ( k e. Prime , ( log ` k ) , ( log ` 1 ) ) = if ( k e. Prime , ( log ` k ) , 0 ) ) | 
						
							| 66 | 64 65 | ax-mp |  |-  if ( k e. Prime , ( log ` k ) , ( log ` 1 ) ) = if ( k e. Prime , ( log ` k ) , 0 ) | 
						
							| 67 | 63 66 | eqtri |  |-  ( log ` if ( k e. Prime , k , 1 ) ) = if ( k e. Prime , ( log ` k ) , 0 ) | 
						
							| 68 | 45 67 | eqtr4di |  |-  ( ( A e. NN /\ k e. ( 1 ... A ) ) -> ( ( n e. NN |-> if ( n e. Prime , ( log ` n ) , 0 ) ) ` k ) = ( log ` if ( k e. Prime , k , 1 ) ) ) | 
						
							| 69 | 68 | fveq2d |  |-  ( ( A e. NN /\ k e. ( 1 ... A ) ) -> ( exp ` ( ( n e. NN |-> if ( n e. Prime , ( log ` n ) , 0 ) ) ` k ) ) = ( exp ` ( log ` if ( k e. Prime , k , 1 ) ) ) ) | 
						
							| 70 |  | id |  |-  ( n = k -> n = k ) | 
						
							| 71 | 36 70 | ifbieq1d |  |-  ( n = k -> if ( n e. Prime , n , 1 ) = if ( k e. Prime , k , 1 ) ) | 
						
							| 72 |  | vex |  |-  k e. _V | 
						
							| 73 | 58 | elexi |  |-  1 e. _V | 
						
							| 74 | 72 73 | ifex |  |-  if ( k e. Prime , k , 1 ) e. _V | 
						
							| 75 | 71 1 74 | fvmpt |  |-  ( k e. NN -> ( F ` k ) = if ( k e. Prime , k , 1 ) ) | 
						
							| 76 | 18 75 | syl |  |-  ( ( A e. NN /\ k e. ( 1 ... A ) ) -> ( F ` k ) = if ( k e. Prime , k , 1 ) ) | 
						
							| 77 | 62 69 76 | 3eqtr4d |  |-  ( ( A e. NN /\ k e. ( 1 ... A ) ) -> ( exp ` ( ( n e. NN |-> if ( n e. Prime , ( log ` n ) , 0 ) ) ` k ) ) = ( F ` k ) ) | 
						
							| 78 | 54 55 47 57 77 | seqhomo |  |-  ( A e. NN -> ( exp ` ( seq 1 ( + , ( n e. NN |-> if ( n e. Prime , ( log ` n ) , 0 ) ) ) ` A ) ) = ( seq 1 ( x. , F ) ` A ) ) | 
						
							| 79 | 52 78 | eqtrd |  |-  ( A e. NN -> ( exp ` ( theta ` A ) ) = ( seq 1 ( x. , F ) ` A ) ) |